A Method of Tracking Targets in Doppler Blind Zone Based on Multiple-hypothesis Motion Models

2014 ◽  
Vol 35 (3) ◽  
pp. 516-523 ◽  
Author(s):  
Wei Han ◽  
Zi-yue Tang ◽  
Zhen-bo Zhu
2021 ◽  
pp. 875529302110279
Author(s):  
Sanaz Rezaeian ◽  
Linda Al Atik ◽  
Nicolas M Kuehn ◽  
Norman Abrahamson ◽  
Yousef Bozorgnia ◽  
...  

This article develops global models of damping scaling factors (DSFs) for subduction zone earthquakes that are functions of the damping ratio, spectral period, earthquake magnitude, and distance. The Next Generation Attenuation for subduction earthquakes (NGA-Sub) project has developed the largest uniformly processed database of recorded ground motions to date from seven subduction regions: Alaska, Cascadia, Central America and Mexico, South America, Japan, Taiwan, and New Zealand. NGA-Sub used this database to develop new ground motion models (GMMs) at a reference 5% damping ratio. We worked with the NGA-Sub project team to develop an extended database that includes pseudo-spectral accelerations (PSA) for 11 damping ratios between 0.5% and 30%. We use this database to develop parametric models of DSF for both interface and intraslab subduction earthquakes that can be used to adjust any subduction GMM from a reference 5% damping ratio to other damping ratios. The DSF is strongly influenced by the response spectral shape and the duration of motion; therefore, in addition to the damping ratio, the median DSF model uses spectral period, magnitude, and distance as surrogate predictor variables to capture the effects of the spectral shape and the duration of motion. We also develop parametric models for the standard deviation of DSF. The models presented in this article are for the RotD50 horizontal component of PSA and are compared with the models for shallow crustal earthquakes in active tectonic regions. Some noticeable differences arise from the considerably longer duration of interface records for very large magnitude events and the enriched high-frequency content of intraslab records, compared with shallow crustal earthquakes. Regional differences are discussed by comparing the proposed global models with the data from each subduction region along with recommendations on the applicability of the models.


Author(s):  
Johannes Mayer ◽  
Thomas-Heinrich Wurster ◽  
Tobias Schaeffter ◽  
Ulf Landmesser ◽  
Andreas Morguet ◽  
...  

Abstract Background Cardiac PET has recently found novel applications in coronary atherosclerosis imaging using [18F]NaF as a radiotracer, highlighting vulnerable plaques. However, the resulting uptakes are relatively small, and cardiac motion and respiration-induced movement of the heart can impair the reconstructed images due to motion blurring and attenuation correction mismatches. This study aimed to apply an MR-based motion compensation framework to [18F]NaF data yielding high-resolution motion-compensated PET and MR images. Methods Free-breathing 3-dimensional Dixon MR data were acquired, retrospectively binned into multiple respiratory and cardiac motion states, and split into fat and water fraction using a model-based reconstruction framework. From the dynamic MR reconstructions, both a non-rigid cardiorespiratory motion model and a motion-resolved attenuation map were generated and applied to the PET data to improve image quality. The approach was tested in 10 patients and focal tracer hotspots were evaluated concerning their target-to-background ratio, contrast-to-background ratio, and their diameter. Results MR-based motion models were successfully applied to compensate for physiological motion in both PET and MR. Target-to-background ratios of identified plaques improved by 7 ± 7%, contrast-to-background ratios by 26 ± 38%, and the plaque diameter decreased by −22 ± 18%. MR-based dynamic attenuation correction strongly reduced attenuation correction artefacts and was not affected by stent-related signal voids in the underlying MR reconstructions. Conclusions The MR-based motion correction framework presented here can improve the target-to-background, contrast-to-background, and width of focal tracer hotspots in the coronary system. The dynamic attenuation correction could effectively mitigate the risk of attenuation correction artefacts in the coronaries at the lung-soft tissue boundary. In combination, this could enable a more reproducible and reliable plaque localisation.


Author(s):  
Zhenxing Li ◽  
Jialing Wan ◽  
Pengfei Wang ◽  
Hanli Weng ◽  
Zhenhua Li

AbstractFault section location of a single-phase grounding fault is affected by the neutral grounding mode of the system, transition resistance, and the blind zone. A fault section locating method based on an amplitude feature and an intelligent distance algorithm is proposed to eliminate the influence of the above factors. By analyzing and comparing the amplitude characteristics of the zero-sequence current transient components at both ends of the healthy section and the faulty section, a distance algorithm with strong abnormal data immune capability is introduced in this paper. The matching degree of the amplitude characteristics at both ends of the feeder section are used as the criterion and by comparing with the set threshold, the faulty section is effectively determined. Finally, simulations using Matlab/Simulink and PSCAD/EMTDC show that the proposed section locating method can locate the faulty section accurately, and is not affected by grounding mode, grounding resistance, or the blind zone.


Sign in / Sign up

Export Citation Format

Share Document