Application of particle packing model in concrete

Author(s):  
Wujian Long ◽  
Bo Zhou ◽  
Peijian Liang ◽  
Roujia Sun
2000 ◽  
Vol 8 (2) ◽  
pp. 159-168 ◽  
Author(s):  
Jong Cheol Kim ◽  
Keun Ho Auh ◽  
David M Martin

2019 ◽  
Vol 44 (60) ◽  
pp. 32170-32183 ◽  
Author(s):  
Magnus So ◽  
Kayoung Park ◽  
Tomohiro Ohnishi ◽  
Masumi Ono ◽  
Yoshifumi Tsuge ◽  
...  

2020 ◽  
Vol 25 (4) ◽  
Author(s):  
Aline Hermann ◽  
Géssica Katalyne Bilcati ◽  
Isabela Ames ◽  
Ana Gabriella Chekalski da Silva ◽  
Daniel Dal Agnol Grossman ◽  
...  

RESUMO O “arranjo seco” de um composto cimentício pode ser definido como a relação mássica ou volumétrica entre os materiais secos que o constitui. Por meio da fixação da espécie de material componente deste arranjo e do processo de produção do composto cimentício, é possível analisar de forma mais clara o processo de dosagem de um composto cimentício qualquer. Para analisar o comportamento destes compostos pelas mudanças nas quantidades volumétricas dos seus componentes, tem-se os modelos básicos de empacotamento de partículas, como é o caso do Modelo de Empacotamento de Funk e Dinger. O presente artigo tem como finalidade analisar as propriedades no estado fresco (índice de consistência) e endurecido (absorção de água, massa específica e resistência à compressão axial) das argamassas produzidas a partir do modelo de empacotamento de partículas de Funk e Dinger. Neste modelo, as partículas de cimento foram consideradas como parte do “arranjo seco” (agregados), transformando em “matriz” (ou agente de separação) somente o volume de água, facilitando desta forma a definição do consumo de cimento. Os resultados demonstraram que é possível alcançar, pela alteração da quantidade volumétrica dos componentes, uma redução do consumo de cimento de aproximadamente 32% e ao mesmo tempo alcançar um aumento da resistência à compressão axial de aproximadamente 59%, juntamente com a redução da absorção e o aumento da massa especifica dos corpos de prova. Contudo, foi verificado um decréscimo significativo na trabalhabilidade das argamassas produzidas.


2021 ◽  
Author(s):  
Jinsu Nam ◽  
Jaehee Lyu ◽  
Junyoung Park

Abstract There are computation time constraints caused by the number and size of particles in the powder packing simulation using DEM. In this paper, newly suggested packing model transforms a general packing sequence –particle generation, stack, and compression – into particle generation and packing by growing particles. To verify the new packing model, it was compared using three contact models widely used in DEM, in terms of Radial Distribution Function, porosity, and Coordination Number. As a result, contact between particles showed a similar trend, and the pore distribution was also similar. Using the new packing model can reduce simulation time by 400% compared to the normal packing model without any other coarse graining methods. This model has only been applied to particle packing simulations in this paper, but it can be expanded to other simulations with complex domain based on DEM.


Author(s):  
Heloisa Fuganti Campos ◽  
André Lucas Bellon ◽  
Eduardo Reis de Lara e Silva ◽  
Maurício Villatore Junior

Abstract The partial replacement of clinker by complementary cementitious materials can significantly contribute to the reduction of carbon emissions in the production of concrete. Another alternative to reduce these emissions is to increase the efficiency of the concrete, achieving higher compressive strength with lower consumption of cement. Particle packing models are efficient tools to optimize the composition of the matrix and contribute to the production of more eco-efficient concretes. In this context, the objective of the present study is evaluating the production of concretes with partial replacement of cement by stone powder, optimized by Alfred’s particle packing model, seeking to reduce cement consumption and CO2 emissions per MPa of compressive strength. The replacement content of cement by stone powder was 20% by mass (equivalent to 22.4% by volume). Concretes were produced with different distribution factor (q) - 0.37; 0.21; 0.45 - to verify the influence of fines on the flow between particles and on the efficiency of the produced concrete. The analyses were carried out in terms of properties in the fresh state, hardened state, and sustainability parameters (cement consumptions and CO2 emissions). The application of the proposed method resulted in a higher compressive strength than the expected for the water/cement ratio used (0.5). The most efficient concrete reached the compressive strength of 68 MPa with 240 kg/m3 of cement, which represents 3.5 kg of cement/m3/MPa and 3.1 kg of CO2/m3/MPa, a value below the references found in the literature for conventional concretes. Therefore, the proposed method allows to produce more eco-efficient concrete, contributing to the use of waste and reducing CO2 emissions.


2022 ◽  
Vol 320 ◽  
pp. 126218
Author(s):  
Rawaz Kurda ◽  
Ahmed Salih ◽  
Pshtiwan Shakor ◽  
Peshkawt Saleh ◽  
Rayed Alyousef ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document