Early responses of vegetation and soil organic carbon to waterlogging and winter wildfire on abandoned red paddy soils

2014 ◽  
Vol 38 (6) ◽  
pp. 626-634
Author(s):  
TIAN Wen-Wen ◽  
◽  
WANG Wei ◽  
CHEN An-Lei ◽  
LI Yu-Yuan ◽  
...  
2016 ◽  
Author(s):  
Zhenke Zhu ◽  
Guanjun Zeng ◽  
Tida Ge ◽  
Yajun Hu ◽  
Chengli Tong ◽  
...  

Abstract. The input of recently photosynthesized C has significant implications on soil organic carbon sequestration, and in paddy soils, both plants and soil microbes contribute to the overall C input. In the present study, we investigated the fate and priming effect of organic C from different sources by conducting a 300-d incubation study with four different 13C-labelled substrates: rice shoots (Shoot-C), rice roots (Root-C), rice rhizodeposits (Rhizo-C), and microbe-assimilated C (Micro-C). The efflux of both 13CO2 and 13CH4 indicated that the mineralization of C in Shoot-C-, Root-C-, Rhizo-C-, and Micro-C-treated soils rapidly increased at the beginning of the incubation and then decreased gradually afterwards. In addition, the highest level of C mineralization was observed in Root-C-treated soil (45.4 %), followed by Shoot-C- (31.9 %), Rhizo-C- (7.9 %), and Micro-C-treated (7.7 %) soils, which corresponded with mean residence times of 33.4, 46.1, 62.9, and 192 d, respectively. Furthermore, the cumulative mineralization of native soil organic carbon in Shoot-C-treated soils was 1.48- fold higher than in untreated soils, and the priming effect of Shoot-C on CO2 and CH4 emission was strongly positive over the entire incubation. However, Root-C failed to exhibit a significant priming effect, which suggests that it could potentially be used to mitigate CH4 emission. Although the total C contents of Rhizo-C- (1.89 %) and Micro-C-treated soils (1.9 %) were higher than those of untreated soil (1.8 %), no significant differences in total C emissions were observed. However, the 13C emissions of Rhizo-C- and Micro-C-treated soils gradually increased over the entire incubation period, which indicated that soil organic C-derived emissions were lower in Rhizo-C- and Micro-C-treated soils than in untreated soil, and that rhizodeposits and microbe-assimilated C could be used to reduce the mineralization of native soil organic carbon and to effectively improve soil C sequestration. The contrasting behaviours of the different photosynthesized C substrates suggests that recycling rice roots in paddies is more beneficial than recycling shoots and reveals the importance of increasing rhizodeposits and microbe-assimilated C in paddy soils via nutrient management.


2017 ◽  
Vol 37 (18) ◽  
Author(s):  
吴家梅 WU Jiamei ◽  
霍莲杰 HUO Lianjie ◽  
纪雄辉 JI Xionghui ◽  
谢运河 XIE Yunhe ◽  
田发祥 TIAN Faxiang ◽  
...  

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Hongtao Wu ◽  
Jinli Hu ◽  
Muhammad Shaaban ◽  
Peng Xu ◽  
Jinsong Zhao ◽  
...  

Abstract Background The size of lime material is vital for the efficiency of ameliorating soil acidity, thereby influencing soil biochemical processes. However, the effects of different sized lime material application on soil organic carbon (SOC) mineralization are yet to be elucidated. Therefore, a 35-day incubation experiment was conducted to determine the effects of three particle size fractions (0.5 to 0.25, 0.25 to 0.15, and < 0.15 mm) of dolomite on SOC mineralization of two acidic paddy soils. Results CO2 emission was increased by 3–7%, 11–21%, and 32–49% for coarse-, medium-, and fine-sized dolomite treatments, respectively, compared to the control in both soils. They also well conformed to a first-order model in all treatments, and the estimated decomposition rate constant was significantly higher in the fine-sized treatment than that of other treatments (P < 0.05), indicating that SOC turnover rate was dependent on the dolomite size. The finer particle sizes were characterized with higher efficiencies of modifying soil pH, consequently resulting in higher dissolved organic carbon contents and microbial biomass carbon, eventually leading to higher CO2 emissions. Conclusions The results demonstrate that the size of dolomite is a key factor in regulating SOC mineralization in acidic paddy soils when dolomite is applied to manipulate soil pH.


2019 ◽  
Vol 187 ◽  
pp. 161-171 ◽  
Author(s):  
Bin Xue ◽  
Li Huang ◽  
Yanan Huang ◽  
Fangliang Zhou ◽  
Feng Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document