Approximate Solutions for Solving Fractional-order Painlevé Equations

2019 ◽  
Vol 1 (1) ◽  
pp. 12-24 ◽  
Author(s):  
Mohammad Izadi

In this work, Chebyshev orthogonal polynomials are employed as basis functions in the collocation scheme to solve the nonlinear Painlevé initial value problems known as the first and second Painlevé equations. Using the collocation points, representing the solution and its fractional derivative (in the Caputo sense) in matrix forms, and the matrix operations, the proposed technique transforms a solution of the initial-value problem for the Painlevé equations into a system of nonlinear algebraic equations. To get ride of nonlinearlity, the technique of quasi-linearization is also applied, which converts the equations into a sequence of linear algebraic equations. The accuracy and efficiency of the presented methods are investigated by some test examples and a comparison has been made with some existing available numerical schemes.

2020 ◽  
Vol 17 (10) ◽  
pp. 2050011
Author(s):  
Şuayip Yüzbaşı ◽  
Gamze Yıldırım

In this study, a method for numerically solving Riccatti type differential equations with functional arguments under the mixed condition is presented. For the method, Legendre polynomials, the solution forms and the required expressions are written in the matrix form and the collocation points are defined. Then, by using the obtained matrix relations and the collocation points, the Riccati problem is reduced to a system of nonlinear algebraic equations. The condition in the problem is written in the matrix form and a new system of the nonlinear algebraic equations is found with the aid of the obtained matrix relation. This system is solved and thus the coefficient matrix is detected. This coefficient matrix is written in the solution form and hence approximate solution is obtained. In addition, by defining the residual function, an error problem is established and approximate solutions which give better numerical results are obtained. To demonstrate that the method is trustworthy and convenient, the presented method and error estimation technique are explicated by numerical examples. Consequently, the numerical results are shown more clearly with the aid of the tables and graphs and also the results are compared with the results of other methods.


2017 ◽  
Vol 10 (07) ◽  
pp. 1750091 ◽  
Author(s):  
Şuayip Yüzbaşi

In this paper, we propose a collocation method to obtain the approximate solutions of a population model and the delay linear Volterra integro-differential equations. The method is based on the shifted Legendre polynomials. By using the required matrix operations and collocation points, the delay linear Fredholm integro-differential equation is transformed into a matrix equation. The matrix equation corresponds to a system of linear algebraic equations. Also, an error estimation method for method and improvement of solutions is presented by using the residual function. Applications of population model and general delay integro-differential equation are given. The obtained results are compared with the known results.


Author(s):  
Vladimir P. Gerdt ◽  
Mikhail D. Malykh ◽  
Leonid A. Sevastianov ◽  
Yu Ying

The article considers the midpoint scheme as a finite-difference scheme for a dynamical system of the form ̇ = (). This scheme is remarkable because according to Cooper’s theorem, it preserves all quadratic integrals of motion, moreover, it is the simplest scheme among symplectic Runge-Kutta schemes possessing this property. The properties of approximate solutions were studied in the framework of numerical experiments with linear and nonlinear oscillators, as well as with a system of several coupled oscillators. It is shown that in addition to the conservation of all integrals of motion, approximate solutions inherit the periodicity of motion. At the same time, attention is paid to the discussion of introducing the concept of periodicity of an approximate solution found by the difference scheme. In the case of a nonlinear oscillator, each step requires solving a system of nonlinear algebraic equations. The issues of organizing computations using such schemes are discussed. Comparison with other schemes, including those symmetric with respect to permutation of and .̂


2021 ◽  
Vol 28 (3) ◽  
pp. 234-237
Author(s):  
Gleb D. Stepanov

This article describes an algorithm for obtaining a non-negative basic solution of a system of linear algebraic equations. This problem, which undoubtedly has an independent interest, in particular, is the most time-consuming part of the famous simplex method for solving linear programming problems.Unlike the artificial basis Orden’s method used in the classical simplex method, the proposed algorithm does not attract artificial variables and economically consumes computational resources.The algorithm consists of two stages, each of which is based on Gaussian exceptions. The first stage coincides with the main part of the Gaussian complete exclusion method, in which the matrix of the system is reduced to the form with an identity submatrix. The second stage is an iterative cycle, at each of the iterations of which, according to some rules, a resolving element is selected, and then a Gaussian elimination step is performed, preserving the matrix structure obtained at the first stage. The cycle ends either when the absence of non-negative solutions is established, or when one of them is found.Two rules for choosing a resolving element are given. The more primitive of them allows for ambiguity of choice and does not exclude looping (but in very rare cases). Use of the second rule ensures that there is no looping.


Author(s):  
I. V. Boikov ◽  
A. I. Boikova

Continuous Seidel method for solving systems of linear and nonlinear algebraic equations is constructed in the article, and the convergence of this method is investigated. According to the method discussed, solving a system of algebraic equations is reduced to solving systems of ordinary differential equations with delay. This allows to use rich arsenal of numerical ODE solution methods while solving systems of algebraic equations. The main advantage of the continuous analogue of the Seidel method compared to the classical one is that it does not require all the elements of the diagonal matrix to be non-zero while solving linear algebraic equations’ systems. The continuous analogue has the similar advantage when solving systems of nonlinear equations.


Author(s):  
Vladimir N. Lutay

The solution of systems of linear algebraic equations, which matrices can be poorly conditioned or singular is considered. As a solution method, the original matrix is decomposed into triangular components by Gauss or Chole-sky with an additional operation, which consists in increasing the small or zero diagonal terms of triangular matrices during the decomposition process. In the first case, the scalar products calculated during decomposition are divided into two positive numbers such that the first is greater than the second, and their sum is equal to the original one. In further operations, the first number replaces the scalar product, as a result of which the value of the diagonal term increases, and the second number is stored and used after the decomposition process is completed to correct the result of calculations. This operation increases the diagonal elements of triangular matrices and prevents the appearance of very small numbers in the Gauss method and a negative root expression in the Cholesky method. If the matrix is singular, then the calculated diagonal element is zero, and an arbitrary positive number is added to it. This allows you to complete the decomposition process and calculate the pseudo-inverse matrix using the Greville method. The results of computational experiments are presented.


1966 ◽  
Vol 10 (01) ◽  
pp. 25-48
Author(s):  
Richard P. Bernicker

A linearized two-dimensional theory is presented for high-speed hydrofoils near the free surface. The "direct" problem (hydrofoil shape specified) is attacked by replacing the actual foil with vortex and source sheets. The resulting integral equation for the strength of the singularity distribution is recast into an infinite set of linear algebraic equations relating the unknown constants in a Glauert-type vorticity expansion to the boundary condition on the foil. The solution is achieved using a matrix inversion technique and it is found that the matrix relating the known and unknown constants is a function of depth of submergence alone. Inversion of this matrix at each depth allows the vorticity constants to be calculated for any arbitrary foil section by matrix multiplication. The inverted matrices have been calculated for several depth-to-chord ratios and are presented herein. Several examples for specific camber and thickness distributions are given, and results indicate significant effects in the force characteristics at depths less than one chord. In particular, thickness effects cause a loss of lift at shallow submergences which may be an appreciable percentage of the total design lift. The second part treats the "indirect" problem of designing a hydrofoil sectional shape at a given depth to achieve a specified pressure loading. Similar to the "direct" problem treated in the first part, integral equations are derived for the camber and thickness functions by replacing the actual foil by vortex and source sheets. The solution is obtained by recasting these equations into an infinite set of linear algebraic equations relating the constants in a series expansion of the foil geometry to the known pressure boundary conditions. The matrix relating the known and unknown constants is, again, a function of the depth of submergence alone, and inversion techniques allow the sectional shape to be determined for arbitrary design pressure distributions. Several examples indicate the procedure and results are presented for the change in sectional shape for a given pressure loading as the depth of submergence of the foil is decreased.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Berna Bülbül ◽  
Mehmet Sezer

We have suggested a numerical approach, which is based on an improved Taylor matrix method, for solving Duffing differential equations. The method is based on the approximation by the truncated Taylor series about center zero. Duffing equation and conditions are transformed into the matrix equations, which corresponds to a system of nonlinear algebraic equations with the unknown coefficients, via collocation points. Combining these matrix equations and then solving the system yield the unknown coefficients of the solution function. Numerical examples are included to demonstrate the validity and the applicability of the technique. The results show the efficiency and the accuracy of the present work. Also, the method can be easily applied to engineering and science problems.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Mohammad Maleki ◽  
M. Tavassoli Kajani ◽  
I. Hashim ◽  
A. Kilicman ◽  
K. A. M. Atan

We propose a numerical method for solving nonlinear initial-value problems of Lane-Emden type. The method is based upon nonclassical Gauss-Radau collocation points, and weighted interpolation. Nonclassical orthogonal polynomials, nonclassical Radau points and weighted interpolation are introduced on arbitrary intervals. Then they are utilized to reduce the computation of nonlinear initial-value problems to a system of nonlinear algebraic equations. We also present the comparison of this work with some well-known results and show that the present solution is very accurate.


Sign in / Sign up

Export Citation Format

Share Document