collocation scheme
Recently Published Documents


TOTAL DOCUMENTS

90
(FIVE YEARS 37)

H-INDEX

12
(FIVE YEARS 3)

2022 ◽  
Vol 7 (4) ◽  
pp. 5431-5443
Author(s):  
Rohul Amin ◽  
◽  
Kamal Shah ◽  
Hijaz Ahmad ◽  
Abdul Hamid Ganie ◽  
...  

<abstract><p>In this paper, we developed a computational Haar collocation scheme for the solution of fractional linear integro-differential equations of variable order. Fractional derivatives of variable order is described in the Caputo sense. The given problem is transformed into a system of algebraic equations using the proposed Haar technique. The results are obtained by solving this system with the Gauss elimination algorithm. Some examples are given to demonstrate the convergence of Haar collocation technique. For different collocation points, maximum absolute and mean square root errors are computed. The results demonstrate that the Haar approach is efficient for solving these equations.</p></abstract>


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2370
Author(s):  
Mohammad Izadi ◽  
Şuayip Yüzbaşı ◽  
Khursheed J. Ansari

The main focus of this paper was to find the approximate solution of a class of second-order multi-pantograph delay differential equations with singularity. We used the shifted version of Vieta–Lucas polynomials with some symmetries as the main base to develop a collocation approach for solving the aforementioned differential equations. Moreover, an error bound of the present approach by using the maximum norm was computed and an error estimation technique based on the residual function is presented. Finally, the validity and applicability of the presented collocation scheme are shown via four numerical test examples.


2021 ◽  
Vol 2084 (1) ◽  
pp. 012023
Author(s):  
Abdulnasir Isah ◽  
Chang Phang

Abstract In this paper, we solve the fractional order stiff system using shifted Genocchi polynomials operational matrix. Different than the well known Genocchi polynomials, we shift the interval from [0, 1] to [1, 2] and name it as shifted Genocchi polynomials. Using the nice properties of shifted Genocchi polynomials which inherit from classical Genocchi polynomials, the shifted Genocchi polynomials operational matrix of fractional derivative will be derived. Collocation scheme are used together with the operational matrix to solve some fractional order stiff system. From the numerical examples, it is obvious that only few terms of shifted Genocchi polynomials is sufficient to obtain result in high accuracy.


2021 ◽  
Vol 5 (4) ◽  
pp. 179
Author(s):  
Mohammad Izadi ◽  
Hari M. Srivastava

The ultimate goal of this study is to develop a numerically effective approximation technique to acquire numerical solutions of the integer and fractional-order Bratu and the singular Lane–Emden-type problems especially with exponential nonlinearity. Both the initial and boundary conditions were considered and the fractional derivative being considered in the Liouville–Caputo sense. In the direct approach, the generalized Bessel matrix method based on collocation points was utilized to convert the model problems into a nonlinear fundamental matrix equation. Then, the technique of quasilinearization was employed to tackle the nonlinearity that arose in our considered model problems. Consequently, the quasilinearization method was utilized to transform the original nonlinear problems into a sequence of linear equations, while the generalized Bessel collocation scheme was employed to solve the resulting linear equations iteratively. In particular, to convert the Neumann initial or boundary condition into a matrix form, a fast algorithm for computing the derivative of the basis functions is presented. The error analysis of the quasilinear approach is also discussed. The effectiveness of the present linearized approach is illustrated through several simulations with some test examples. Comparisons with existing well-known schemes revealed that the presented technique is an easy-to-implement method while being very effective and convenient for the nonlinear Bratu and Lane–Emden equations.


Sign in / Sign up

Export Citation Format

Share Document