Linear Codes Obtained from Projective and Grassmann Bundles on Curves

Author(s):  
Edoardo Ballico

We use split vector bundles on an arbitrary smooth curve defined over Fq to get linear codes (following the general set-up considered by S. H. Hansen and T. Nakashima), generalizing two quoted results by T. Nakashima. If p ≠ 2 for all integers d, g ≥ 2, r > 0 such that either r is odd or d is even we prove the existence of a smooth curve C of genus g defined over Fq and a p-semistable vector bundle E on C such that rank(E) = r, deg(E) = d and E is defined over Fq. Most results for particular curves are obtained taking double coverings or triple coverings of elliptic curves.

2002 ◽  
Vol 13 (07) ◽  
pp. 785-796 ◽  
Author(s):  
VINCENT MERCAT

We give here a refinement of the classical Clifford's theorem for the upper bound of the number of independent global sections of a semistable vector bundle on a smooth curve. We also conjecture a new version of this theorem that takes into account the Clifford index of the curve. In the case of a bi-elliptic curve we obtain a very precise bound. Finally we study the case of rank 2 bundles.


2021 ◽  
Vol 27 (3) ◽  
Author(s):  
Soheyla Feyzbakhsh ◽  
Chunyi Li

AbstractLet (X, H) be a polarized K3 surface with $$\mathrm {Pic}(X) = \mathbb {Z}H$$ Pic ( X ) = Z H , and let $$C\in |H|$$ C ∈ | H | be a smooth curve of genus g. We give an upper bound on the dimension of global sections of a semistable vector bundle on C. This allows us to compute the higher rank Clifford indices of C with high genus. In particular, when $$g\ge r^2\ge 4$$ g ≥ r 2 ≥ 4 , the rank r Clifford index of C can be computed by the restriction of Lazarsfeld–Mukai bundles on X corresponding to line bundles on the curve C. This is a generalization of the result by Green and Lazarsfeld for curves on K3 surfaces to higher rank vector bundles. We also apply the same method to the projective plane and show that the rank r Clifford index of a degree $$d(\ge 5)$$ d ( ≥ 5 ) smooth plane curve is $$d-4$$ d - 4 , which is the same as the Clifford index of the curve.


2020 ◽  
Vol 117 (9) ◽  
pp. 4546-4558 ◽  
Author(s):  
Lin Weng ◽  
Don Zagier

In earlier work by L.W., a nonabelian zeta function was defined for any smooth curve X over a finite fieldFqand any integern≥1bywhere the sum is over isomorphism classes ofFq-rational semistable vector bundles V of rank n on X with degree divisible by n. This function, which agrees with the usual Artin zeta function ofX/Fqifn=1, is a rational function ofq−swith denominator(1−q−ns)(1−qn−ns)and conjecturally satisfies the Riemann hypothesis. In this paper we study the case of genus 1 curves in detail. We show that in that case the Dirichlet serieswhere the sum is now over isomorphism classes ofFq-rational semistable vector bundles V of degree 0 on X, is equal to∏k=1∞ζX/Fq(s+k),and use this fact to prove the Riemann hypothesis forζX,n(s)for all n.


2021 ◽  
Vol 71 (1) ◽  
pp. 199-210
Author(s):  
Aniruddha C. Naolekar

Abstract Let 𝓔 k denote the set of diffeomorphism classes of closed connected smooth k-manifolds X with the property that for any oriented vector bundle α over X, the Euler class e(α) = 0. We show that if X ∈ 𝓔2n+1 is orientable, then X is a rational homology sphere and π 1(X) is perfect. We also show that 𝓔8 = ∅ and derive additional cohomlogical restrictions on orientable manifolds in 𝓔 k .


2003 ◽  
Vol 204 (2) ◽  
pp. 355-398 ◽  
Author(s):  
Carlos A. Florentino ◽  
José M. Mourão ◽  
João P. Nunes

2011 ◽  
Vol 84 (2) ◽  
pp. 255-260
Author(s):  
EDOARDO BALLICO ◽  
FRANCESCO MALASPINA

AbstractHere we classify the weakly uniform rank two vector bundles on multiprojective spaces. Moreover, we show that every rank r>2 weakly uniform vector bundle with splitting type a1,1=⋯=ar,s=0 is trivial and every rank r>2 uniform vector bundle with splitting type a1>⋯>ar splits.


Author(s):  
Nils A. Baas ◽  
Marcel Bökstedt ◽  
Tore August Kro

AbstractFor a 2-category 2C we associate a notion of a principal 2C-bundle. For the 2-category of 2-vector spaces, in the sense of M.M. Kapranov and V.A. Voevodsky, this gives the 2-vector bundles of N.A. Baas, B.I. Dundas and J. Rognes. Our main result says that the geometric nerve of a good 2-category is a classifying space for the associated principal 2-bundles. In the process of proving this we develop powerful machinery which may be useful in further studies of 2-categorical topology. As a corollary we get a new proof of the classification of principal bundles. Another 2-category of 2-vector spaces has been proposed by J.C. Baez and A.S. Crans. A calculation using our main theorem shows that in this case the theory of principal 2-bundles splits, up to concordance, as two copies of ordinary vector bundle theory. When 2C is a cobordism type 2-category we get a new notion of cobordism-bundles which turns out to be classified by the Madsen–Weiss spaces.


Author(s):  
Mihajlo Cekić ◽  
Thibault Lefeuvre

Abstract Given a smooth Hermitian vector bundle $\mathcal{E}$ over a closed Riemannian manifold $(M,g)$, we study generic properties of unitary connections $\nabla ^{\mathcal{E}}$ on the vector bundle $\mathcal{E}$. First of all, we show that twisted conformal Killing tensors (CKTs) are generically trivial when $\dim (M) \geq 3$, answering an open question of Guillarmou–Paternain–Salo–Uhlmann [ 14]. In negative curvature, it is known that the existence of twisted CKTs is the only obstruction to solving exactly the twisted cohomological equations, which may appear in various geometric problems such as the study of transparent connections. The main result of this paper says that these equations can be generically solved. As a by-product, we also obtain that the induced connection $\nabla ^{\textrm{End}({\operatorname{{\mathcal{E}}}})}$ on the endomorphism bundle $\textrm{End}({\operatorname{{\mathcal{E}}}})$ has generically trivial CKTs as long as $(M,g)$ has no nontrivial CKTs on its trivial line bundle. Eventually, we show that, under the additional assumption that $(M,g)$ is Anosov (i.e., the geodesic flow is Anosov on the unit tangent bundle), the connections are generically opaque, namely that generically there are no non-trivial subbundles of $\mathcal{E}$ that are preserved by parallel transport along geodesics. The proofs rely on the introduction of a new microlocal property for (pseudo)differential operators called operators of uniform divergence type, and on perturbative arguments from spectral theory (especially on the theory of Pollicott–Ruelle resonances in the Anosov case).


2019 ◽  
Vol 7 ◽  
Author(s):  
A. ASOK ◽  
J. FASEL ◽  
M. J. HOPKINS

Suppose $X$ is a smooth complex algebraic variety. A necessary condition for a complex topological vector bundle on $X$ (viewed as a complex manifold) to be algebraic is that all Chern classes must be algebraic cohomology classes, that is, lie in the image of the cycle class map. We analyze the question of whether algebraicity of Chern classes is sufficient to guarantee algebraizability of complex topological vector bundles. For affine varieties of dimension ${\leqslant}3$, it is known that algebraicity of Chern classes of a vector bundle guarantees algebraizability of the vector bundle. In contrast, we show in dimension ${\geqslant}4$ that algebraicity of Chern classes is insufficient to guarantee algebraizability of vector bundles. To do this, we construct a new obstruction to algebraizability using Steenrod operations on Chow groups. By means of an explicit example, we observe that our obstruction is nontrivial in general.


2015 ◽  
Vol 2 (1) ◽  
Author(s):  
Svetlana Ermakova

AbstractIn this article we establish an analogue of the Barth-Van de Ven-Tyurin-Sato theorem.We prove that a finite rank vector bundle on a complete intersection of finite codimension in a linear ind-Grassmannian is isomorphic to a direct sum of line bundles.


Sign in / Sign up

Export Citation Format

Share Document