scholarly journals Estimation of Some Useful Drugs in Water, Urine, and Medical Formulations Following Conventional and Modified Dispersive Microextraction Coupled with HPLC-UV

2021 ◽  
pp. 11-33
Author(s):  
Mitali Sarkar ◽  
Shanku Denrah

Dispersive Liquid-Liquid Microextraction (DLLME) coupled with high-performance liquid chromatography-ultraviolet spectroscopy was developed, as a fast and precise operation, for extractive recovery and estimation of two pharmaceuticals viz. moxifloxacin and galantamine, from water, urine, and medical formulations. The process was investigated for Extraction (ES) and Dispersive Solvent (DS) as well as pH, temperature, and salt concentration. Extraction was found effective using methanol (CH3OH), as the DS, employing 1,1,2,2-tetrachloroethane (C2H2Cl4) and chloroform (CHCl3), as the ES, for moxifloxacin and galantamine respectively. The optimum pH was found to be 6.9 for moxifloxacin and 10.2 for galantamine. Temperature and salt were found to have some influence on the extraction efficiency of moxifloxacin but insignificant for galantamine. An improvement of the operation in terms of the Extraction efficiency (ER %), Preconcentration Factor (PF), thermodynamic feasibility, and greenness were achieved during surfactant aided DLLME (SDS-DLLME), where anionic surfactant (Sodium Dodecyl Sulphate (SDS)) was employed and no DS was required. Interestingly, the volume requirement for ES was found less, compared to that in the conventional DLLME, without compromising the performance. Moreover, quantitative recovery of both the drugs was achieved using a single ES. Thus, mutual separation and simultaneous determination of moxifloxacin and galantamine may be designed. A two-phase separation with concomitant enrichment of the solute in the sediment phase occurred. The drugs in the sediment phase, on subsequent dilution with methanol, were determined using the High Performance Liquid Chromatography-Ultraviolet (HPLC-UV) system. The negative free energy changes for the operation indicated that the process was thermodynamically feasible. The process was found to be effective for the spiked recovery of the studied drugs from real samples viz, water, human urine, and commercial medical formulations.

2019 ◽  
Vol 15 (5) ◽  
pp. 535-541 ◽  
Author(s):  
Fariba Pourkarim ◽  
Ali Shayanfar ◽  
Maryam Khoubnasabjafari ◽  
Fariborz Akbarzadeh ◽  
Sanaz Sajedi-Amin ◽  
...  

Background:Developing a simple analysis method for quantification of drug concentration is one of the essential issues in pharmacokinetic and therapeutic drug monitoring studies.Objective:A fast and reliable dispersive liquid-liquid microextraction procedure was employed for preconcentration of verapamil in exhaled breath condensate (EBC) samples and this was followed by the determination with high-performance liquid chromatography-ultraviolet detection.Methods:A reverse-phase high-performance liquid chromatography (RP-HPLC) combined with a dispersive liquid-liquid microextraction method (DLLME) was applied for quantification of verapamil in the EBC samples. The developed method was validated according to FDA guidelines.Results:Under the optimum conditions, the method provided a linear range between 0.07 and 0.8 µg.mL-1 with a coefficient of determination of 0.998. The intra- and inter-day relative standard deviation and relative error values of the method were below 15%, which indicated good precision and accuracy. The proposed method was successfully applied for the analysis of verapamil in two real samples with concentrations of 0.07 and 0.09 µg.mL-1.Conclusion:The established HPLC-UV-DLLME method could be applied for the analysis of verapamil in human EBC samples.


1985 ◽  
Vol 65 (2) ◽  
pp. 285-298 ◽  
Author(s):  
J. E. KRUGER ◽  
B. A. MARCHYLO

Chromatographic conditions were optimized and three commercially available columns were evaluated for separation of alcohol-soluble storage proteins of Neepawa wheat using reversed-phase high-performance liquid chromatography (RP-HPLC). Optimal separation was achieved using an extracting solution of 50% 1-propanol, 1% acetic acid, and 4% dithiothreitol and an HPLC elution time of 105 min at a flow rate of 1.0 mL/min. HPLC columns evaluated (SynChropak RP-P, Ultrapore RPSC and Aquapore RP-300) varied in selectivity and resolution. The column providing the greatest versatility was Aquapore RP-300 available in cartridge form. Sodium dodecyl sulfate gradient-gel electrophoresis analysis of protein peaks resolved by RP-HPLC indicated that many of the eluted peaks contained more than one protein species. Chromatographic protein patterns obtained for Neepawa wheat grown at different locations and in different years were qualitatively the same.Key words: Protein, high-performance liquid chromatography, wheat


Sign in / Sign up

Export Citation Format

Share Document