phthalate esters
Recently Published Documents





2022 ◽  
Vol 423 ◽  
pp. 127001
Xianyu Wang ◽  
Elvis D. Okoffo ◽  
Andrew PW Banks ◽  
Yan Li ◽  
Kevin V. Thomas ◽  

2022 ◽  
Vol 806 ◽  
pp. 150559
Shamim Hajiouni ◽  
Azam Mohammadi ◽  
Bahman Ramavandi ◽  
Hossein Arfaeinia ◽  
Gabriel E. De-la-Torre ◽  

2022 ◽  
Vol 12 ◽  
Luchen Yang ◽  
Zhenghuan Liu ◽  
Zhufeng Peng ◽  
Pan Song ◽  
Jing Zhou ◽  

30% of men suffer from benign prostatic hyperplasia (BPH) worldwide. As one of the most important members of Phthalate esters, previous studies suggested ubiquitous Di-(2-ethylhexyl) phthalate (DEHP) exposure is associated with such male disorders by interfering with endocrine system, however, little is known about the association between DEHP exposure and BPH. The objective of this study was to study the potential association by the 2001–2008 National Health and Nutrition Examination Survey (NHANES) data. The data was collected, and multiple logistic regression was adapted to measure the association. The concentrations of DEHP (∑DEHP) were calculated by each metabolite and split into quartiles for analysis. Results showed that the odds ratio (OR) decreased with increased ∑DEHP concentration. In the crude model, the OR for the second quartile (OR = 1.60, 95%CI [1.24, 2.07]) was obviously higher compared with the lowest quartile. However, the OR for the highest quartile (OR = 0.55, 95%CI [0.44,0.69]) was lower than that for the third quartile (OR = 0.77, 95%CI [0.61, 0.97]), and the OR for the third and the highest quartile were significantly lower than that of the lowest quartile, which suggested biphasic effects of DEHP based on concentration. The results showed the same trend after adjusting confounding factors. The study suggested that the DEHP exposure is associated with DEHP, and the results adds limited evidence to study this topic, however, further researches are needed to determine if the status of BPH can be changed by controlling DEHP exposure.

Haibo Wang ◽  
Pingfeng Yu ◽  
Cory Schwarz ◽  
Bo Zhang ◽  
Lixin Huo ◽  

2022 ◽  
Jingfei Zhang ◽  
Guoyue Shi ◽  
Yu Zhang

Herein, the Au@Ag@β-cyclodextrin (CD) nanoparticles with relatively uniform shape and size at ~13 nm in diameter have been successfully synthesized, the surface of the synthesized nanoparticles is evenly coated by...

2021 ◽  
Vol 14 (1) ◽  
pp. 347
Kuan-Nan Lin ◽  
Chiu-Wen Chen ◽  
Chih-Feng Chen ◽  
Yee Cheng Lim ◽  
Chih-Ming Kao ◽  

The Fengshan River system is one of the major rivers in Kaohsiung City, Taiwan. This study investigated the concentration of eight phthalate esters (PAEs) in sediments of the river and the impact of potential ecological risks during the dry and wet seasons. The potential risk assessment of sediment PAEs was evaluated by adopting the total risk quotient (TRQ) method. The total PAEs concentrations (∑PAEs) in the sediments of the Fengshan River system are between 490–40,190 ng/g dw, with an average of 8418 ± 11,812 ng/g dw. Diisononyl phthalate (38.1%), bis(2-ethylhexyl) phthalate (36.9%) and di-isodecyl phthalate (24.3%) accounted for more than 99.3% of ∑PAEs. The concentration of ∑PAEs in sediments at the river channel stations is higher during the wet season (616–15,281 ng/g dw) than that during the dry season (490–1535 ng/g dw). However, in the downstream and estuary stations, the wet season (3975–6768 ng/g dw) is lower than the dry season (20,216–40,190 ng/g dw). The PAEs in sediments of the Fengshan River may have low to moderate potential risks to aquatic organisms. The TQR of PAEs in sediments at the downstream and estuary (TQR = 0.13) is higher than that in the upstream (TQR = 0.04). In addition, during the wet season, rainfall transported a large amount of land-sourced PAEs to rivers, leading to increased PAEs concentration and potential ecological risks in the upper reaches of the river.

Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 178
Antonio Herrera-Herrera ◽  
Ruth Rodríguez-Ramos ◽  
Álvaro Santana-Mayor ◽  
Bárbara Socas-Rodríguez ◽  
Miguel Rodríguez-Delgado

A vortex-assisted liquid-liquid microextraction, based on a natural hydrophobic deep eutectic solvent made from the monoterpene thymol and octanoic fatty acid, was employed for the analysis of 11 phthalate esters and one adipate in kombucha (a tea-based fermented beverage). Separation and determination were performed using an ultra-high performance liquid chromatography (UHPLC) system coupled to a single quadrupole mass spectrometer. Confirmatory analyses were carried out through UHPLC tandem mass spectrometry. The full method was validated in terms of matrix effect, matrix-matched calibration, sensitivity, recovery, limits of detection and quantification and repeatability. Satisfactory determination coefficients for quadratic calibration curves (≥0.9938), recovery values (67–120%) and limits of detection (0.07–5.45 µg/L) were obtained. Analysis of 26 kombucha samples reported concentrations for dibutyl phthalate and dimethyl phthalate in the range between the limit of quantification (LOQ) and 16.18 ± 1.14 µg/L, although these phthalates were also detected under the LOQ in some of the analyzed samples. Only one of the samples bottled in plastic containers (7) did not present residues while only five of the 19 samples in glass bottles contained any plasticizer. However, the highest concentration was found in a kombucha bottled in food-grade glass. This work represents the first application in which phthalates and adipates are analyzed in kombuchas.

Sign in / Sign up

Export Citation Format

Share Document