scholarly journals Integration of terbium isotopes into modern nuclear medicine

Author(s):  
Pavlo Korol ◽  
Michael Tkachenko ◽  
A. Voloshyn

The review examines the clinical role of terbium isotopes in the context of their integration into modern routine practice in nuclear medicine. Low toxicity, combined with an optimal half-life and elimination time from the body, makes them very promising not only in the therapeutic sense, but also in the issue of diagnostic imaging of tumors. When performing PET /CT and SPECT/CT imaging with 152Tb and 155Tb isotopes on cancer patients, high diagnostic information values were obtained. It should be noted that in the context of 152Tb, the phase of clinical trials on patients has already been completed, according to the results of which this radionuclide has demonstrated its potential. SPECT with 155Tb provides excellent imaging performance in mammals, even with low levels of injected radioactivity, which makes it promising for use in humans. Key words: terbium, nuclear medicine, single-photon emission tomography, positron emission tomography

2020 ◽  
Vol 34 (11) ◽  
pp. 799-806
Author(s):  
Koichiro Abe ◽  
Makoto Hosono ◽  
Takayuki Igarashi ◽  
Takashi Iimori ◽  
Masanobu Ishiguro ◽  
...  

Abstract The diagnostic reference levels (DRLs) are one of several effective tools for optimizing nuclear medicine examinations and reducing patient exposure. With the advances in imaging technology and alterations of examination protocols, the DRLs must be reviewed periodically. The first DRLs in Japan were established in 2015, and since 5 years have passed, it is time to review and revise the DRLs. We conducted a survey to investigate the administered activities of radiopharmaceuticals and the radiation doses of computed tomography (CT) in hybrid CT accompanied by single photon emission computed tomography (SPECT)/CT and positron emission tomography (PET)/CT. We distributed a Web-based survey to 915 nuclear medicine facilities throughout Japan and survey responses were provided by 256 nuclear medicine facilities (response rate 28%). We asked for the facility's median actual administered activity and median radiation dose of hybrid CT when SPECT/CT or PET/CT was performed for patients with standard habitus in the standard protocol of the facility for each nuclear medicine examination. We determined the new DRLs based on the 75th percentile referring to the 2015 DRLs, drug package inserts, and updated guidelines. The 2020 DRLs are almost the same as the 2015 DRLs, but for the relatively long-lived radionuclides, the DRLs are set low due to the changes in the Japanese delivery system. There are no items set higher than the previous values. Although the DRLs determined this time are roughly equivalent to the DRLs used in the US, overall they tend to be higher than the European DRLs. The DRLs of the radiation dose of CT in hybrid CT vary widely depending on each imaging site and the purpose of the examination.


2019 ◽  
Vol 65 (3) ◽  
Author(s):  
Hanna Piwowarska-Bilska ◽  
Aleksandra Supińska ◽  
Jacek Iwanowski ◽  
Adriana Tyczyńska ◽  
Bożena Birkenfeld

Positron emission tomography (PET) is currently the most advanced diagnostic imaging technology along with well-known techniques like magnetic resonance imaging (MRI) and computed tomography (CT). Tremendous technical progress in engineering, imaging and radiopharmacy has provided the basis for impressive technological advances in the field of nuclear medicine over the past 50 years. Current nuclear medicine can be divided into 2 groups: the classic, which uses gamma-cameras for single photon emission computed tomography (SPECT) imaging, and the more modern PET technique. The clinical PET technique requires: (i) patient administration of the radiopharmaceutical labelled with a positron emitter, (ii) recording of the gamma radiation emitted from the patient’s body with a dedicated PET/ CT scanner, (iii) processing and analysis of recorded images. This article presents the basics of PET technology and research, and describes new technical trends introduced by the leading manufacturers of PET/CT scanners.


2021 ◽  
Vol 18 (3) ◽  
Author(s):  
Iga Strojna ◽  
Witold Cholewiński

Techniki obrazowe z zakresu medycyny nuklearnej znajdują szerokie zastosowanie w ocenie licznych jednostek chorobowych, w tym – schorzeń układu ruchu. Wśród najczęściej wykorzystywanych metod radioizotopowych, wyróżniamy: scyntygrafię trójfazową (z ang. triple-phase scintigraphy), tomografię emisyjną pojedynczego fotonu (z ang. single-photon emission tomography, SPECT) oraz pozytonową tomografię emisyjną/tomografię komputerową (z ang. positron emission tomography/computed tomography, PET/CT).


2018 ◽  
Vol 24 (7) ◽  
pp. 806-813
Author(s):  
Zohar Keidar

Nuclear Medicine (NM) imaging plays a major role in the assessment of infection and inflammation. Tracers, including single photon emitting radionuclides for Single Photon Emission Tomography (SPECT) and agents for positron emission tomography (PET), reflect primarily tissue and cellular function or metabolism. In the specific clinical setting of a patient with suspected infectious or inflammatory process, planar scintigraphy, SPECT or PET procedures are used to support a clinically suspected diagnosis. Integrating metabolic and anatomic information using a single SPECT/CT or PET/CT technique has substantially improved the diagnostic accuracy of these imaging tests and advanced the NM technology to be a significant and important tool in the field of infection and inflammation. Diabetes, one of the most prevalent diseases, has a direct relationship with the development of various infection related condition. Due to alterations in different metabolic pathways, imaging of the diabetic patient may be subject to specific pitfalls and obstacles which should be taken into consideration. This review aimed at describing the impact of diabetes and hyperglycemia on NM imaging, with an emphasis on FDGPET/ CT, in specific infectious conditions related to diabetes.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Natalie A. Bebbington ◽  
Bryan T. Haddock ◽  
Henrik Bertilsson ◽  
Eero Hippeläinen ◽  
Ellen M. Husby ◽  
...  

Abstract Background Computed tomography (CT) scans are routinely performed in positron emission tomography (PET) and single photon emission computed tomography (SPECT) examinations globally, yet few surveys have been conducted to gather national diagnostic reference level (NDRL) data for CT radiation doses in positron emission tomography/computed tomography (PET/CT) and single photon emission computed tomography/computed tomography (SPECT/CT). In this first Nordic-wide study of CT doses in hybrid imaging, Nordic NDRL CT doses are suggested for PET/CT and SPECT/CT examinations specific to the clinical purpose of CT, and the scope for optimisation is evaluated. Data on hybrid imaging CT exposures and clinical purpose of CT were gathered for 5 PET/CT and 8 SPECT/CT examinations via designed booklet. For each included dataset for a given facility and scanner type, the computed tomography dose index by volume (CTDIvol) and dose length product (DLP) was interpolated for a 75-kg person (referred to as CTDIvol,75kg and DLP75kg). Suggested NDRL (75th percentile) and achievable doses (50th percentile) were determined for CTDIvol,75kg and DLP75kg according to clinical purpose of CT. Differences in maximum and minimum doses (derived for a 75-kg patient) between facilities were also calculated for each examination and clinical purpose. Results Data were processed from 83 scanners from 43 facilities. Data were sufficient to suggest Nordic NDRL CT doses for the following: PET/CT oncology (localisation/characterisation, 15 systems); infection/inflammation (localisation/characterisation, 13 systems); brain (attenuation correction (AC) only, 11 systems); cardiac PET/CT and SPECT/CT (AC only, 30 systems); SPECT/CT lung (localisation/characterisation, 12 systems); bone (localisation/characterisation, 30 systems); and parathyroid (localisation/characterisation, 13 systems). Great variations in dose were seen for all aforementioned examinations. Greatest differences in DLP75kg for each examination, specific to clinical purpose, were as follows: SPECT/CT lung AC only (27.4); PET/CT and SPECT/CT cardiac AC only (19.6); infection/inflammation AC only (18.1); PET/CT brain localisation/characterisation (16.8); SPECT/CT bone localisation/characterisation (10.0); PET/CT oncology AC only (9.0); and SPECT/CT parathyroid localisation/characterisation (7.8). Conclusions Suggested Nordic NDRL CT doses are presented according to clinical purpose of CT for PET/CT oncology, infection/inflammation, brain, PET/CT and SPECT/CT cardiac, and SPECT/CT lung, bone, and parathyroid. The large variation in doses suggests great scope for optimisation in all 8 examinations.


Sign in / Sign up

Export Citation Format

Share Document