scholarly journals Application of Interval Predictor Model Into Model Predictive Control

2022 ◽  
Vol 20 ◽  
pp. 331-343
Author(s):  
Wang Jianhong ◽  
Ricardo A. Ramirez-Mendoza

In this paper, interval prediction model is studied for model predictive control (MPC) strategy with unknown but bounded noise. After introducing the family of models and some basic information, some computational results are presented to construct interval predictor model, using linear regression structure whose regression parameters are included in a sphere parameter set. A size measure is used to scale the average amplitude of the predictor interval, then one optimal model that minimizes this size measure is efficiently computed by solving a linear programming problem. The active set approach is applied to solve the linear programming problem, and based on these optimization variables, the predictor interval of the considered model with sphere parameter set can be directly constructed. As for choosing a fixed non-negative number in our given size measure, a better choice is proposed by using the Karush-Kuhn-Tucker (KKT) optimality conditions. In order to apply interval prediction model into model predictive control, the midpoint of that interval is substituted in a quadratic optimization problem with inequality constrained condition to obtain the optimal control input. After formulating it as a standard quadratic optimization and deriving its dual form, the Gauss-Seidel algorithm is applied to solve the dual problem and convergence of Gauss-Seidel algorithm is provided too. Finally simulation examples confirm our theoretical results.

Machines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 105
Author(s):  
Zhenzhong Chu ◽  
Da Wang ◽  
Fei Meng

An adaptive control algorithm based on the RBF neural network (RBFNN) and nonlinear model predictive control (NMPC) is discussed for underwater vehicle trajectory tracking control. Firstly, in the off-line phase, the improved adaptive Levenberg–Marquardt-error surface compensation (IALM-ESC) algorithm is used to establish the RBFNN prediction model. In the real-time control phase, using the characteristic that the system output will change with the external environment interference, the network parameters are adjusted by using the error between the system output and the network prediction output to adapt to the complex and uncertain working environment. This provides an accurate and real-time prediction model for model predictive control (MPC). For optimization, an improved adaptive gray wolf optimization (AGWO) algorithm is proposed to obtain the trajectory tracking control law. Finally, the tracking control performance of the proposed algorithm is verified by simulation. The simulation results show that the proposed RBF-NMPC can not only achieve the same level of real-time performance as the linear model predictive control (LMPC) but also has a superior anti-interference ability. Compared with LMPC, the tracking performance of RBF-NMPC is improved by at least 43% and 25% in the case of no interference and interference, respectively.


2017 ◽  
Vol 27 (3) ◽  
pp. 563-573 ◽  
Author(s):  
Rajendran Vidhya ◽  
Rajkumar Irene Hepzibah

AbstractIn a real world situation, whenever ambiguity exists in the modeling of intuitionistic fuzzy numbers (IFNs), interval valued intuitionistic fuzzy numbers (IVIFNs) are often used in order to represent a range of IFNs unstable from the most pessimistic evaluation to the most optimistic one. IVIFNs are a construction which helps us to avoid such a prohibitive complexity. This paper is focused on two types of arithmetic operations on interval valued intuitionistic fuzzy numbers (IVIFNs) to solve the interval valued intuitionistic fuzzy multi-objective linear programming problem with pentagonal intuitionistic fuzzy numbers (PIFNs) by assuming differentαandβcut values in a comparative manner. The objective functions involved in the problem are ranked by the ratio ranking method and the problem is solved by the preemptive optimization method. An illustrative example with MATLAB outputs is presented in order to clarify the potential approach.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Lihui Cen ◽  
Ziqiang Wu ◽  
Xiaofang Chen ◽  
Yanggui Zou ◽  
Shaohui Zhang

This paper proposes a model predictive control of open irrigation canals with constraints. The Saint-Venant equations are widely used in hydraulics to model an open canal. As a set of hyperbolic partial differential equations, they are not solved explicitly and difficult to design optimal control algorithms. In this work, a prediction model of an open canal is developed by discretizing the Saint-Venant equations in both space and time. Based on the prediction model, a constrained model predictive control was firstly investigated for the case of one single-pool canal and then generalized to the case of a cascaded canal with multipools. The hydraulic software SICC was used to simulate the canal and test the algorithms with application to a real-world irrigation canal of Yehe irrigation area located in Hebei province.


Sign in / Sign up

Export Citation Format

Share Document