scholarly journals A review of demodulation techniques for multifrequency atomic force microscopy

2020 ◽  
Vol 11 ◽  
pp. 76-91 ◽  
Author(s):  
David M Harcombe ◽  
Michael G Ruppert ◽  
Andrew J Fleming

This article compares the performance of traditional and recently proposed demodulators for multifrequency atomic force microscopy. The compared methods include the lock-in amplifier, coherent demodulator, Kalman filter, Lyapunov filter, and direct-design demodulator. Each method is implemented on a field-programmable gate array (FPGA) with a sampling rate of 1.5 MHz. The metrics for comparison include the sensitivity to other frequency components and the magnitude of demodulation artifacts for a range of demodulator bandwidths. Performance differences are demonstrated through higher harmonic atomic force microscopy imaging.

2018 ◽  
Vol 9 ◽  
pp. 490-498 ◽  
Author(s):  
David M Harcombe ◽  
Michael G Ruppert ◽  
Michael R P Ragazzon ◽  
Andrew J Fleming

An important issue in the emerging field of multifrequency atomic force microscopy (MF-AFM) is the accurate and fast demodulation of the cantilever-tip deflection signal. As this signal consists of multiple frequency components and noise processes, a lock-in amplifier is typically employed for its narrowband response. However, this demodulator suffers inherent bandwidth limitations as high-frequency mixing products must be filtered out and several must be operated in parallel. Many MF-AFM methods require amplitude and phase demodulation at multiple frequencies of interest, enabling both z-axis feedback and phase contrast imaging to be achieved. This article proposes a model-based multifrequency Lyapunov filter implemented on a field-programmable gate array (FPGA) for high-speed MF-AFM demodulation. System descriptions and simulations are verified by experimental results demonstrating high tracking bandwidths, strong off-mode rejection and minor sensitivity to cross-coupling effects. Additionally, a five-frequency system operating at 3.5 MHz is implemented for higher harmonic amplitude and phase imaging up to 1 MHz.


Nano Research ◽  
2012 ◽  
Vol 5 (4) ◽  
pp. 235-247 ◽  
Author(s):  
Rouholla Alizadegan ◽  
Albert D. Liao ◽  
Feng Xiong ◽  
Eric Pop ◽  
K. Jimmy Hsia

2013 ◽  
Vol 56 (9) ◽  
pp. 811-817 ◽  
Author(s):  
Mi Li ◽  
LianQing Liu ◽  
Ning Xi ◽  
YueChao Wang ◽  
ZaiLi Dong ◽  
...  

1993 ◽  
Vol 32 (Part 1, No. 6B) ◽  
pp. 2965-2968 ◽  
Author(s):  
Teiko Shibata-Seki ◽  
Junji Masai ◽  
Kenji Yoshida ◽  
Kazuki Sato ◽  
Hiroshi Yanagawa

Nanoscale ◽  
2017 ◽  
Vol 9 (36) ◽  
pp. 13707-13716 ◽  
Author(s):  
Anna D. Protopopova ◽  
Rustem I. Litvinov ◽  
Dennis K. Galanakis ◽  
Chandrasekaran Nagaswami ◽  
Nikolay A. Barinov ◽  
...  

High-resolution atomic force microscopy imaging reveals the role of fibrinogen αC regions in the early stages of fibrin self-assembly.


Sign in / Sign up

Export Citation Format

Share Document