scholarly journals Impact of cell shape in hierarchically structured plant surfaces on the attachment of male Colorado potato beetles (Leptinotarsa decemlineata)

2012 ◽  
Vol 3 ◽  
pp. 57-64 ◽  
Author(s):  
Bettina Prüm ◽  
Robin Seidel ◽  
Holger Florian Bohn ◽  
Thomas Speck

Plant surfaces showing hierarchical structuring are frequently found in plant organs such as leaves, petals, fruits and stems. In our study we focus on the level of cell shape and on the level of superimposed microstructuring, leading to hierarchical surfaces if both levels are present. While it has been shown that epicuticular wax crystals and cuticular folds strongly reduce insect attachment, and that smooth papillate epidermal cells in petals improve the grip of pollinators, the impact of hierarchical surface structuring of plant surfaces possessing convex or papillate cells on insect attachment remains unclear. We performed traction experiments with male Colorado potato beetles on nine different plant surfaces with different structures. The selected plant surfaces showed epidermal cells with either tabular, convex or papillate cell shape, covered either with flat films of wax, epicuticular wax crystals or with cuticular folds. On surfaces possessing either superimposed wax crystals or cuticular folds we found traction forces to be almost one order of magnitude lower than on surfaces covered only with flat films of wax. Independent of superimposed microstructures we found that convex and papillate epidermal cell shapes slightly enhance the attachment ability of the beetles. Thus, in plant surfaces, cell shape and superimposed microstructuring yield contrary effects on the attachment of the Colorado potato beetle, with convex or papillate cells enhancing attachment and both wax crystals or cuticular folds reducing attachment. However, the overall magnitude of traction force mainly depends on the presence or absence of superimposed microstructuring.

Weed Science ◽  
1993 ◽  
Vol 41 (4) ◽  
pp. 583-589 ◽  
Author(s):  
Chester G. Mcwhorter ◽  
Clark Ouzts ◽  
Rex N. Paul

Adaxial and abaxial epidermal surfaces of johnsongrass leaves were studied to determine which cells contribute to leaf microroughness. Cork-silica cell (CSC) pairs, three types of prickles, macrohairs, bicellular trichomes, stomata, and ordinary short and long epidermal cells were found and described. CSC pairs made up about 22% of all cells and probably contribute more to microroughness than any other single type because each cork cell produces 11 ± 3 wax filaments that are up to 100 μm long. Bicellular trichomes represented 4 to 5% of the total cells but decreased leaf roughness by secreting a type of mucilage that covers microscopic wax crystals. Stomatal complexes comprised 15 to 18% of all cells and contributed to leaf roughness because they are slightly recessed below the leaf surface. Long prickles occur primarily over veins and represent less than 1% of all cells. Small prickles were present primarily on adaxial surfaces and represent only 3% of all cells. Macrohairs were the largest appendages, 237 ± 104 μm, but they represent far less than 1% of all cells and occur primarily over veins. Ordinary short cells comprised 6 to 13% of all cells. Long cells were most common (41%) of all cells. Short and long cells contribute to leaf roughness because the surface is often convex. A typical johnsongrass leaf may contain more than 25 million appendages on each surface that increase the roughness already caused by epicuticular wax crystals.


2009 ◽  
Vol 277 (1683) ◽  
pp. 895-903 ◽  
Author(s):  
Dagmar Voigt ◽  
Stanislav Gorb

Plant surfaces covered with crystalline epicuticular waxes are known to be anti-adhesive, hardly wettable and preventing insect attachment. But there are insects that are capable of gluing their eggs to these surfaces by means of proteinaceous secretions. In this study, we analysed the bonding region between the eggs of Crioceris asparagi and the plant surface of Asparagus officinalis using light and cryo-scanning electron microscopy. The wettability of the plant surface by egg secretion was compared with that by Aqua Millipore water, aqueous sugar solution and chicken egg white. Furthermore, the force required to remove C. asparagi eggs from the plant surface was measured, in order to evaluate the egg's bonding strength. Mean pull-off force was 14.7 mN, which is about 8650 times higher than the egg weight. Egg glue was observed spreading over the wax crystal arrays on the plant cladophyll and wetting them. Similar wetting behaviour on the A. officinalis surface was observed for chicken egg white. Our results support the hypothesis that the mechanism of insect egg adhesion on micro- and nanostructured hydrophobic plant surfaces is related to the proteinaceous nature of adhesive secretions of insect eggs. The secretion wets superhydrophobic surfaces and after solidifying builds up a composite, consisting of the solidified glue and wax crystals, at the interface between the egg and plant cuticle.


Sign in / Sign up

Export Citation Format

Share Document