scholarly journals Heterogeneous Pd catalysts as emulsifiers in Pickering emulsions for integrated multistep synthesis in flow chemistry

2018 ◽  
Vol 14 ◽  
pp. 648-658 ◽  
Author(s):  
Katharina Hiebler ◽  
Georg J Lichtenegger ◽  
Manuel C Maier ◽  
Eun Sung Park ◽  
Renie Gonzales-Groom ◽  
...  

Within the “compartmentalised smart factory” approach of the ONE-FLOW project the implementation of different catalysts in “compartments” provided by Pickering emulsions and their application in continuous flow is targeted. We present here the development of heterogeneous Pd catalysts that are ready to be used in combination with biocatalysts for catalytic cascade synthesis of active pharmaceutical ingredients (APIs). In particular, we focus on the application of the catalytic systems for Suzuki–Miyaura cross-coupling reactions, which is the key step in the synthesis of the targeted APIs valsartan and sacubitril. An immobilised enzyme will accomplish the final product formation via hydrolysis. In order to create a large interfacial area for the catalytic reactions and to keep the reagents separated until required, the catalyst particles are used to stabilise Pickering emulsions of oil and water. A set of Ce–Sn–Pd oxides with the molecular formula Ce0.99− x Sn x Pd0.01O2−δ (x = 0–0.99) has been prepared utilising a simple single-step solution combustion method. The high applicability of the catalysts for different functional groups and their minimal leaching behaviour is demonstrated with various Suzuki–Miyaura cross-coupling reactions in batch as well as in continuous flow employing the so-called “plug & play reactor”. Finally, we demonstrate the use of these particles as the sole emulsifier of oil–water emulsions for a range of oils.

Synthesis ◽  
2020 ◽  
Vol 52 (23) ◽  
pp. 3511-3529 ◽  
Author(s):  
Peter Koóš ◽  
Martin Markovič ◽  
Pavol Lopatka ◽  
Tibor Gracza

Considerable advances have been made using continuous flow chemistry as an enabling tool in organic synthesis. Consequently, the number of articles reporting continuous flow methods has increased significantly in recent years. This review covers the progress achieved in homogeneous palladium catalysis using continuous flow conditions over the last five years, including C–C/C–N cross-coupling reactions, carbonylations and reductive/oxidative transformations.1 Introduction2 C–C Cross-Coupling Reactions3 C–N Coupling Reactions4 Carbonylation Reactions5 Miscellaneous Reactions6 Key to Schematic Symbols7 Conclusion


ChemCatChem ◽  
2015 ◽  
Vol 7 (6) ◽  
pp. 875-875
Author(s):  
Roberto Ricciardi ◽  
Jurriaan Huskens ◽  
Michael Holtkamp ◽  
Uwe Karst ◽  
Willem Verboom

ACS Catalysis ◽  
2012 ◽  
Vol 2 (6) ◽  
pp. 1147-1164 ◽  
Author(s):  
Hongbo Li ◽  
Carin C. C. Johansson Seechurn ◽  
Thomas J. Colacot

Molecules ◽  
2019 ◽  
Vol 24 (2) ◽  
pp. 215 ◽  
Author(s):  
Sandeep R. Vemula ◽  
Michael R. Chhoun ◽  
Gregory R. Cook

Over the past few decades, transition metal catalysis has witnessed a rapid and extensive development. The discovery and development of cross-coupling reactions is considered to be one of the most important advancements in the field of organic synthesis. The design and synthesis of well-defined and bench-stable transition metal pre-catalysts provide a significant improvement over the current catalytic systems in cross-coupling reactions, avoiding excess use of expensive ligands and harsh conditions for the synthesis of pharmaceuticals, agrochemicals and materials. Among various well-defined pre-catalysts, the use of Pd(II)-NHC, particularly, provided new avenues to expand the scope of cross-coupling reactions incorporating unreactive electrophiles, such as amides and esters. The strong σ-donation and tunable steric bulk of NHC ligands in Pd-NHC complexes facilitate oxidative addition and reductive elimination steps enabling the cross-coupling of broad range of amides and esters using facile conditions contrary to the arduous conditions employed under traditional catalytic conditions. Owing to the favorable catalytic activity of Pd-NHC catalysts, a tremendous progress was made in their utilization for cross-coupling reactions via selective acyl C–X (X=N, O) bond cleavage. This review highlights the recent advances made in the utilization of well-defined pre-catalysts for C–C and C–N bond forming reactions via selective amide and ester bond cleavage.


2015 ◽  
Vol 68 (12) ◽  
pp. 1842 ◽  
Author(s):  
Sven S. Kampmann ◽  
Nikki Y. T. Man ◽  
Allan J. McKinley ◽  
George A. Koutsantonis ◽  
Scott G. Stewart

In this study, we present an investigation into various nickel phosphite and phosphite–phosphine complexes for use in the Mizoroki–Heck and Suzuki–Miyaura cross-coupling reactions and the ammonia arylation reaction. In these coupling reactions, it was discovered that the Ni[P(OEt)3]4, (dppf)Ni[P(OPh)3]2, and (binap)Ni[P(OPh)3]2 catalysts were the most effective. In addition, an optimisation process for these catalytic systems as well as functional group compatibility are discussed.


Sign in / Sign up

Export Citation Format

Share Document