phosphine complexes
Recently Published Documents


TOTAL DOCUMENTS

1372
(FIVE YEARS 61)

H-INDEX

65
(FIVE YEARS 6)

CrystEngComm ◽  
2022 ◽  
Author(s):  
Zhen-Zhou Sun ◽  
Ning Zhu ◽  
Xun Pan ◽  
Guo Wang ◽  
Yuping Yang ◽  
...  

Herein, six new [Cu(N^N)(P^P)]+/0 complexes with different N-ligand and counteranions [Cu2(dmp)2(bdppmapy)I2] (1), [Cu2(dmp)2(bdppmapy)(CN)2]·3CH3OH (2), [Cu(dmp)(bdppmapy)](BF4) (3), [Cu(dmp)(bdppmapy)](ClO4) (4), [Cu(phen)(bdppmapy)](BF4) (5), [Cu(phen)(bdppmapy)](ClO4) (6) have been synthesized and characterized (bdppmapy = N,N-bis[(diphenylphosphino)methyl]-2-pyridinamine,...


Author(s):  
Simon G. Rachor ◽  
Robert Müller ◽  
Philipp Wittwer ◽  
Martin Kaupp ◽  
Thomas Braun
Keyword(s):  

2021 ◽  
Author(s):  
◽  
Rosemarie Janet Somerville

<p>Recent advances in homogeneous catalysis have identified the importance of ligands able to participate in the catalytic cycle. Particularly relevant to making chemistry “greener” are those ligands that solubilise the catalyst in aqueous solution, and those that are able to activate water molecules towards reaction with the metal complex or substrate. This thesis describes the synthesis and coordination chemistry of a novel ligand bearing 2-pyridylphosphine substituents attached to a 2,6-pyridyl backbone (²⁻pyrPNP, [(C₅H₄N)₂PCH₂]₂C₅H₃N). These components were selected for their abilities to interact with water through dearomatisation processes, hydrogen bonding, and the basic pyridyl nitrogen atoms.  The synthesis of pure ²⁻pyrPNP described here represents a much improved method for the synthesis of pyridylphosphines compared to those published in the literature. This is demonstrated by comparison with the original synthetic route, which produced many intractable impurities, as well as by the ability of the new method to provide PhPNP from an economical and air-stable starting material.  Reactions of ²⁻pyrPNP with rhodium precursors show complicated reactivity, including the potential formation of paramagnetic species. Investigation into the reactivity of ²⁻pyrPNP with analogous iridium precursors resulted in the synthesis of [(²⁻pyrPNP)Ir(cod)]Cl. This is the first crystallographically characterised complex containing a facially coordinated PNP ligand. The cod ligand can be removed with ethene and hydrogen to form bis(ethene) and chloroiridium(III) bis(hydride) complexes [(²⁻pyrPNP)Ir(C₂H₄)₂]Cl and [(²⁻pyrPNP)Ir(H)₂Cl], respectively. Both complexes contain meridionally-coordinated ²⁻pyrPNP.  Preliminary investigations reveal that the iridium complexes are fairly successful nitrile hydration catalysts under aqueous conditions. In addition, the cod and bis(ethene) complexes bearing ²⁻pyrPNP are more active than the cod complex of the pyridyl-free PhPNP ligand.</p>


2021 ◽  
Author(s):  
◽  
Rosemarie Janet Somerville

<p>Recent advances in homogeneous catalysis have identified the importance of ligands able to participate in the catalytic cycle. Particularly relevant to making chemistry “greener” are those ligands that solubilise the catalyst in aqueous solution, and those that are able to activate water molecules towards reaction with the metal complex or substrate. This thesis describes the synthesis and coordination chemistry of a novel ligand bearing 2-pyridylphosphine substituents attached to a 2,6-pyridyl backbone (²⁻pyrPNP, [(C₅H₄N)₂PCH₂]₂C₅H₃N). These components were selected for their abilities to interact with water through dearomatisation processes, hydrogen bonding, and the basic pyridyl nitrogen atoms.  The synthesis of pure ²⁻pyrPNP described here represents a much improved method for the synthesis of pyridylphosphines compared to those published in the literature. This is demonstrated by comparison with the original synthetic route, which produced many intractable impurities, as well as by the ability of the new method to provide PhPNP from an economical and air-stable starting material.  Reactions of ²⁻pyrPNP with rhodium precursors show complicated reactivity, including the potential formation of paramagnetic species. Investigation into the reactivity of ²⁻pyrPNP with analogous iridium precursors resulted in the synthesis of [(²⁻pyrPNP)Ir(cod)]Cl. This is the first crystallographically characterised complex containing a facially coordinated PNP ligand. The cod ligand can be removed with ethene and hydrogen to form bis(ethene) and chloroiridium(III) bis(hydride) complexes [(²⁻pyrPNP)Ir(C₂H₄)₂]Cl and [(²⁻pyrPNP)Ir(H)₂Cl], respectively. Both complexes contain meridionally-coordinated ²⁻pyrPNP.  Preliminary investigations reveal that the iridium complexes are fairly successful nitrile hydration catalysts under aqueous conditions. In addition, the cod and bis(ethene) complexes bearing ²⁻pyrPNP are more active than the cod complex of the pyridyl-free PhPNP ligand.</p>


2021 ◽  
Author(s):  
◽  
Sarah Amy Hoyte

<p>The coordination chemistry of the cyclopropyl-substituted alkenes, bicyclopropylidene (BCP) and methylenecyclopropane (MCP), with platinum was explored. A range of complexes with ŋ²-alkene ligands were synthesised by the displacement of a ligand, typically ethene, from a precursor complex. These complexes are [Pt(L)(P—P)] (L = BCP, MCP; P—P = Ph₂P(CH₂)₃PPh₂, Cy₂P(CH₂)₂PCy₂, ᵗBu₂P(CH₂)₂PᵗBu₂, ᵗBu₂PCH₂(o-C₆H₄)₂PᵗBu₂), [Pt(L)(P—S)] (L = BCP, MCP; P—S = ᵗBu₂PCH₂(o-₆H4)CH₂SᵗBu), [Pt(C₂H4)(L)(PR₃)] (L = BCP, MCP; PR₃ = PPh₃, PCy₃), [Pt(MCP)₂(PR₃)] (PR₃ = PPh₃, PCy₃) and [PtCl₂(L)(L′)] (L = BCP, MCP; L′ = Py, DMSO). These were the first examples of platinum complexes with ŋ²-BCP ligands, and the first bis-MCP Pt complexes.  BCP underwent ring-opening reactions with both Pt(0) and Pt(II) complexes to form the 1,3-diene allylidenecyclopropane (ACP). The first transition metal complexes of ACP [Pt(ACP)(P—P)] (P—P = Ph₂P(CH₂)₃PPh₂, Cy₂P(CH₂)₂PCy₂, ᵗBu₂P(CH₂)₂PᵗBu₂) were synthesised. Some of these complexes rearranged to form ŋ²:σ²-metallacyclopentene complexes, the first instances of the formation of ŋ²:σ²-metallacyclopentene complexes from ŋ²:π-diene complexes. With MCP, the ring-opening reaction only occurred with [₂(COD)], as a result of the anti-Markovnikov addition of Pt–H, generated by the β-hydride elimination of an Et group, across the double-bond. The major products of this reaction were the 1-methylcyclopropyl complexes [Pt(C(CH₂)₂CH₃)Et(COD)] and [Pt(C(CH₂)₂CH₃)₂(COD)], the first examples of such complexes.  Protonation of [Pt(L)(P—P)] resulted in a ring-opening reaction to form both the 2-substituted and 1-methyl allyl complexes, [Pt(ŋ³-CH₂CRCH₂)(P—P)]⁺ (R = ᶜPr, Me; P—P = Ph₂P(CH₂)₃PPh₂, ᵗBu₂PCH₂(o-C₆H₄)CH₂PᵗBu₂) and [Pt(ŋ³-CR₂CHCHMe)(P—P)]⁺ (R = cPr, Me; P—P = Ph₂P(CH₂)₃PPh₂, ᵗBuPCH₂(o-C₆H₄)CH₂PᵗBu₂). The analogous 1-methyl complexes were also formed from [Pt(L)(P—S)], wherein the alkene reacted with a hydride formed by the ortho-metallation of the P—S ligand. Computational models were used to investigate the formation of the allyl structures and it was found that the activation energy had a more significant effect than complex stability on product distributions.  Complexes with β-chloroalkyl ligands [Pt(C(CH₂)₂CR₂Cl)Cl(L)₂] (R = CH₂, H, L = SEt₂, NCᵗBu, Py) were formed by the addition of Pt–Cl across the alkene double bond. Phosphine complexes were formed by the displacement of a ligand from cis–[Pt(C(CH₂)₂CR₂Cl)Cl(Py)₂] (R = CH₂, H). These are the first examples of stable Pt(II) β-haloalkyl complexes. It was found using computational models that the presence of cyclopropyl rings had a stabilising effect on these complexes.</p>


2021 ◽  
Author(s):  
◽  
Sarah Amy Hoyte

<p>The coordination chemistry of the cyclopropyl-substituted alkenes, bicyclopropylidene (BCP) and methylenecyclopropane (MCP), with platinum was explored. A range of complexes with ŋ²-alkene ligands were synthesised by the displacement of a ligand, typically ethene, from a precursor complex. These complexes are [Pt(L)(P—P)] (L = BCP, MCP; P—P = Ph₂P(CH₂)₃PPh₂, Cy₂P(CH₂)₂PCy₂, ᵗBu₂P(CH₂)₂PᵗBu₂, ᵗBu₂PCH₂(o-C₆H₄)₂PᵗBu₂), [Pt(L)(P—S)] (L = BCP, MCP; P—S = ᵗBu₂PCH₂(o-₆H4)CH₂SᵗBu), [Pt(C₂H4)(L)(PR₃)] (L = BCP, MCP; PR₃ = PPh₃, PCy₃), [Pt(MCP)₂(PR₃)] (PR₃ = PPh₃, PCy₃) and [PtCl₂(L)(L′)] (L = BCP, MCP; L′ = Py, DMSO). These were the first examples of platinum complexes with ŋ²-BCP ligands, and the first bis-MCP Pt complexes.  BCP underwent ring-opening reactions with both Pt(0) and Pt(II) complexes to form the 1,3-diene allylidenecyclopropane (ACP). The first transition metal complexes of ACP [Pt(ACP)(P—P)] (P—P = Ph₂P(CH₂)₃PPh₂, Cy₂P(CH₂)₂PCy₂, ᵗBu₂P(CH₂)₂PᵗBu₂) were synthesised. Some of these complexes rearranged to form ŋ²:σ²-metallacyclopentene complexes, the first instances of the formation of ŋ²:σ²-metallacyclopentene complexes from ŋ²:π-diene complexes. With MCP, the ring-opening reaction only occurred with [₂(COD)], as a result of the anti-Markovnikov addition of Pt–H, generated by the β-hydride elimination of an Et group, across the double-bond. The major products of this reaction were the 1-methylcyclopropyl complexes [Pt(C(CH₂)₂CH₃)Et(COD)] and [Pt(C(CH₂)₂CH₃)₂(COD)], the first examples of such complexes.  Protonation of [Pt(L)(P—P)] resulted in a ring-opening reaction to form both the 2-substituted and 1-methyl allyl complexes, [Pt(ŋ³-CH₂CRCH₂)(P—P)]⁺ (R = ᶜPr, Me; P—P = Ph₂P(CH₂)₃PPh₂, ᵗBu₂PCH₂(o-C₆H₄)CH₂PᵗBu₂) and [Pt(ŋ³-CR₂CHCHMe)(P—P)]⁺ (R = cPr, Me; P—P = Ph₂P(CH₂)₃PPh₂, ᵗBuPCH₂(o-C₆H₄)CH₂PᵗBu₂). The analogous 1-methyl complexes were also formed from [Pt(L)(P—S)], wherein the alkene reacted with a hydride formed by the ortho-metallation of the P—S ligand. Computational models were used to investigate the formation of the allyl structures and it was found that the activation energy had a more significant effect than complex stability on product distributions.  Complexes with β-chloroalkyl ligands [Pt(C(CH₂)₂CR₂Cl)Cl(L)₂] (R = CH₂, H, L = SEt₂, NCᵗBu, Py) were formed by the addition of Pt–Cl across the alkene double bond. Phosphine complexes were formed by the displacement of a ligand from cis–[Pt(C(CH₂)₂CR₂Cl)Cl(Py)₂] (R = CH₂, H). These are the first examples of stable Pt(II) β-haloalkyl complexes. It was found using computational models that the presence of cyclopropyl rings had a stabilising effect on these complexes.</p>


Author(s):  
Björn Kwasigroch ◽  
Thien Khuu ◽  
Evan H. Perez ◽  
Joanna K. Denton ◽  
Erik Schneider ◽  
...  

Author(s):  
Matthew D. Hannigan ◽  
Anne J. McNeil ◽  
Paul M. Zimmerman

2021 ◽  
Vol 513 ◽  
pp. 111778
Author(s):  
Elizaveta V. Larina ◽  
Anna A. Kurokhtina ◽  
Elena V. Vidyaeva ◽  
Nadezhda A. Lagoda ◽  
Alexander F. Schmidt

Sign in / Sign up

Export Citation Format

Share Document