Effect of Frequency Boundary Assignment on Speech Recognition with the Nucleus 24 ACE Speech Coding Strategy

2007 ◽  
Vol 18 (08) ◽  
pp. 700-717 ◽  
Author(s):  
Marios S. Fourakis ◽  
John W. Hawks ◽  
Laura K. Holden ◽  
Margaret W. Skinner ◽  
Timothy A. Holden

The choice of frequency boundaries for the analysis channels of cochlear implants has been shown to impact the speech perception performance of adult recipients (Skinner et al, 1995; Fourakis et al, 2004). While technological limitations heretofore have limited the clinical feasibility of investigating novel frequency assignments, the SPEAR3 research processor affords the opportunity to investigate an unlimited number of possibilities. Here, four different assignments are evaluated using a variety of speech stimuli. All participants accommodated to assignment changes, and no one assignment was significantly preferred. The results suggest that better performance can be achieved using a strategy whereby (1) there are at least 7-8 electrodes allocated below 1000 Hz, (2) the majority of remaining electrodes are allocated between 1100 - 3000 Hz, and (3) the region above 3 kHz is represented by relatively few electrodes (i.e., 1-3). The results suggest that such frequency assignment flexibility should be made clinically available. La escogencia de límites de frecuencia para los canales de análisis de los implantes cocleares se ha visto que impacta el desempeño en la percepción del lenguaje de adultos implantados (Skinner y col, 1995; Fourakis y col, 2004). Mientras que las limitaciones tecnológicas hasta este momento han restringido la factibilidad clínica de investigar nuevas asignaciones de frecuencia, el procesador experimental SPEAR3 ofrece la oportunidad de investigar un número ilimitado de posibilidades. Aquí, se evalúan cuatro asignaciones diferentes utilizando una variedad de estímulos de lenguaje. Todos los participantes se acomodaron a los cambios de asignación y ninguna asignación tuvo una preferencia significativa. Los resultados sugieren que puede obtenerse un desempeño mejor utilizando una estrategia donde (1) existan al menos 7-8 electrodos colocados por debajo de 1000 Hz, (2) la mayoría de los electrodos remanentes sean colocados entre 1100 – 3000 Hz, y (3) la región por encima de 3 kHz esté representada por relativamente pocos electrodos (p.e., 1-3). Los resultados sugieren que tal flexibilidad en la asignación de frecuencias debería estar clínicamente disponible.

2004 ◽  
Vol 5 (S1) ◽  
pp. 45-47
Author(s):  
Chuan-Jen Hsu ◽  
Shih-Hsuan Shiao ◽  
Yuh-Shyang Chen ◽  
Mei-Ji Horng ◽  
Qian-Jie Fu

2004 ◽  
Vol 5 (sup1) ◽  
pp. 45-47 ◽  
Author(s):  
Chuan-Jen Hsu ◽  
Shih-Hsuan Shiao ◽  
Yuh-Shyang Chen ◽  
Mei-Ji Horng ◽  
Qian-Jie Fu

2002 ◽  
Vol 23 (5) ◽  
pp. 463-476 ◽  
Author(s):  
Laura K. Holden ◽  
Margaret W. Skinner ◽  
Timothy A. Holden ◽  
Marilyn E. Demorest

2011 ◽  
Vol 22 (09) ◽  
pp. 623-632 ◽  
Author(s):  
René H. Gifford ◽  
Amy P. Olund ◽  
Melissa DeJong

Background: Current cochlear implant recipients are achieving increasingly higher levels of speech recognition; however, the presence of background noise continues to significantly degrade speech understanding for even the best performers. Newer generation Nucleus cochlear implant sound processors can be programmed with SmartSound strategies that have been shown to improve speech understanding in noise for adult cochlear implant recipients. The applicability of these strategies for use in children, however, is not fully understood nor widely accepted. Purpose: To assess speech perception for pediatric cochlear implant recipients in the presence of a realistic restaurant simulation generated by an eight-loudspeaker (R-SPACE™) array in order to determine whether Nucleus sound processor SmartSound strategies yield improved sentence recognition in noise for children who learn language through the implant. Research Design: Single subject, repeated measures design. Study Sample: Twenty-two experimental subjects with cochlear implants (mean age 11.1 yr) and 25 control subjects with normal hearing (mean age 9.6 yr) participated in this prospective study. Intervention: Speech reception thresholds (SRT) in semidiffuse restaurant noise originating from an eight-loudspeaker array were assessed with the experimental subjects’ everyday program incorporating Adaptive Dynamic Range Optimization (ADRO) as well as with the addition of Autosensitivity control (ASC). Data Collection and Analysis: Adaptive SRTs with the Hearing In Noise Test (HINT) sentences were obtained for all 22 experimental subjects, and performance—in percent correct—was assessed in a fixed +6 dB SNR (signal-to-noise ratio) for a six-subject subset. Statistical analysis using a repeated-measures analysis of variance (ANOVA) evaluated the effects of the SmartSound setting on the SRT in noise. Results: The primary findings mirrored those reported previously with adult cochlear implant recipients in that the addition of ASC to ADRO significantly improved speech recognition in noise for pediatric cochlear implant recipients. The mean degree of improvement in the SRT with the addition of ASC to ADRO was 3.5 dB for a mean SRT of 10.9 dB SNR. Thus, despite the fact that these children have acquired auditory/oral speech and language through the use of their cochlear implant(s) equipped with ADRO, the addition of ASC significantly improved their ability to recognize speech in high levels of diffuse background noise. The mean SRT for the control subjects with normal hearing was 0.0 dB SNR. Given that the mean SRT for the experimental group was 10.9 dB SNR, despite the improvements in performance observed with the addition of ASC, cochlear implants still do not completely overcome the speech perception deficit encountered in noisy environments accompanying the diagnosis of severe-to-profound hearing loss. Conclusion: SmartSound strategies currently available in latest generation Nucleus cochlear implant sound processors are able to significantly improve speech understanding in a realistic, semidiffuse noise for pediatric cochlear implant recipients. Despite the reluctance of pediatric audiologists to utilize SmartSound settings for regular use, the results of the current study support the addition of ASC to ADRO for everyday listening environments to improve speech perception in a child's typical everyday program.


ORL ◽  
2014 ◽  
Vol 76 (1) ◽  
pp. 36-43 ◽  
Author(s):  
Andrea Kleine Punte ◽  
Marc De Bodt ◽  
Paul Van de Heyning

PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257568
Author(s):  
Xiao Gao ◽  
David Grayden ◽  
Mark McDonnell

Despite the development and success of cochlear implants over several decades, wide inter-subject variability in speech perception is reported. This suggests that cochlear implant user-dependent factors limit speech perception at the individual level. Clinical studies have demonstrated the importance of the number, placement, and insertion depths of electrodes on speech recognition abilities. However, these do not account for all inter-subject variability and to what extent these factors affect speech recognition abilities has not been studied. In this paper, an information theoretic method and machine learning technique are unified in a model to investigate the extent to which key factors limit cochlear implant electrode discrimination. The framework uses a neural network classifier to predict which electrode is stimulated for a given simulated activation pattern of the auditory nerve, and mutual information is then estimated between the actual stimulated electrode and predicted ones. We also investigate how and to what extent the choices of parameters affect the performance of the model. The advantages of this framework include i) electrode discrimination ability is quantified using information theory, ii) it provides a flexible framework that may be used to investigate the key factors that limit the performance of cochlear implant users, and iii) it provides insights for future modeling studies of other types of neural prostheses.


1988 ◽  
Vol 84 (S1) ◽  
pp. S40-S40
Author(s):  
Judith A. Brimacombe ◽  
Anne L. Beiter ◽  
Mary J. Barker ◽  
Karen A. Mikami ◽  
Steven J. Staller

2018 ◽  
Vol 29 (09) ◽  
pp. 814-825 ◽  
Author(s):  
Patti M. Johnstone ◽  
Kristen E. T. Mills ◽  
Elizabeth Humphrey ◽  
Kelly R. Yeager ◽  
Emily Jones ◽  
...  

AbstractCochlear implant (CI) users are affected more than their normal hearing (NH) peers by the negative consequences of background noise on speech understanding. Research has shown that adult CI users can improve their speech recognition in challenging listening environments by using dual-microphone beamformers, such as adaptive directional microphones (ADMs) and wireless remote microphones (RMs). The suitability of these microphone technologies for use in children with CIs is not well-understood nor widely accepted.To assess the benefit of ADM or RM technology on speech perception in background noise in children and adolescents with cochlear implants (CIs) with no previous or current use of ADM or RM.Mixed, repeated measures design.Twenty (20) children, ten (10) CI users (mean age 14.3 yrs) who used Advanced Bionics HiRes90K implants with research Naida processors, and ten (10) NH age-matched controls participated in this prospective study.CI users listened with an ear-canal level microphone, T-Mic (TM), an ADM, and a wireless RM at different audio-mixing ratios. Speech understanding with five microphone settings (TM 100%, ADM, RM + TM 50/50, RM + TM 75/25, RM 100%) was evaluated in quiet and in noise.Speech perception ability was measured using children’s spondee words to obtain a speech recognition threshold for 80% accuracy (SRT80%) in 20-talker babble where the listener sat in a sound booth 1 m (3.28′) from the target speech (front) and noise (behind) to test five microphone settings (TM 100%, ADM, RM + TM 50/50, RM + TM 75/25, RM 100%). Group performance-intensity functions were computed for each listening condition to show the effects of microphone configuration with respect to signal-to-noise ratio (SNR). A difference score (CI Group minus NH Group) was computed to show the effect of microphone technology at different SNRs relative to NH. Statistical analysis using a repeated-measures analysis of variance evaluated the effects of the microphone configurations on SRT80% and performance at SNRs. Between-groups analysis of variance was used to compare the CI group with the NH group.The speech recognition was significantly poorer for children with CI than children with NH in quiet and in noise when using the TM alone. Adding the ADM or RM provided a significant improvement in speech recognition for the CI group over use of the TM alone in noise (mean dB advantage ranged from 5.8 for ADM to 16 for RM100). When children with CI used the RM75 or RM100 in background babble, speech recognition was not statistically different from the group with NH.Speech recognition in noise performance improved with the use of ADM and RM100 or RM75 over TM-only for children with CIs. Alhough children with CI remain at a disadvantage as compared with NH children in quiet and more favorable SNRs, microphone technology can enhance performance for some children with CI to match that of NH peers in contexts with negative SNRs.


Sign in / Sign up

Export Citation Format

Share Document