Second Harmonic Generation Characteristics of Continuous Wave Narrow-Linespectrum All Fiber Amplifier in PPSLT

2012 ◽  
Vol 39 (3) ◽  
pp. 0302005
Author(s):  
焦梦丽 Jiao Mengli ◽  
吕新杰 Lü Xinjie ◽  
刘驰 Liu Chi ◽  
袁烨 Yuan Ye ◽  
漆云凤 Qi Yunfeng ◽  
...  
2010 ◽  
Vol 35 (20) ◽  
pp. 3513 ◽  
Author(s):  
G. K. Samanta ◽  
S. Chaitanya Kumar ◽  
Kavita Devi ◽  
M. Ebrahim-Zadeh

2009 ◽  
Vol 94 (15) ◽  
pp. 151107 ◽  
Author(s):  
Sean J. Wagner ◽  
Barry M. Holmes ◽  
Usman Younis ◽  
Amr S. Helmy ◽  
J. Stewart Aitchison ◽  
...  

2018 ◽  
Vol 12 (10) ◽  
pp. 1800126 ◽  
Author(s):  
Qingchen Yuan ◽  
Liang Fang ◽  
He Yang ◽  
Xuetao Gan ◽  
Vladislav Khayrudinov ◽  
...  

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
N. Vukovic ◽  
N. Healy ◽  
J. R. Sparks ◽  
J. V. Badding ◽  
P. Horak ◽  
...  

Abstract Whispering gallery mode microresonators made from crystalline materials are of great interest for studies of low threshold nonlinear phenomena. Compared to amorphous materials, crystalline structures often exhibit desirable properties such as high indices of refraction, high nonlinearities and large windows of transparency, making them ideal for use in frequency comb generation, microlasing and all-optical processing. In particular, crystalline materials can also possess a non-centrosymmetric structure which gives rise to the second order nonlinearity, necessary for three photon processes such as frequency doubling and parametric down-conversion. Here we report a novel route to fabricating crystalline zinc selenide microcylindrical resonators from our semiconductor fibre platform and demonstrate their use for tunable, low power continuous wave second harmonic generation. Visible red light is observed when pumped with a telecommunications band source by a process that is phase-matched between different higher order radial modes, possible due to the good spatial overlap between the pump and signal in the small volume resonator. By exploiting the geometrical flexibility offered by the fibre platform together with the ultra-wide 500–22000 nm transmission window of the ZnSe material, we expect these resonators to find use in applications ranging from spectroscopy to quantum information systems.


Sign in / Sign up

Export Citation Format

Share Document