semiconductor nanowires
Recently Published Documents


TOTAL DOCUMENTS

903
(FIVE YEARS 128)

H-INDEX

74
(FIVE YEARS 6)

2022 ◽  
Vol 54 (2) ◽  
Author(s):  
Noori S. Anad ◽  
Zakaria M. Abd El-Fattah ◽  
M. Attallah ◽  
Hanaa M. Ahmed ◽  
M. M. El-Okr ◽  
...  

2021 ◽  
Author(s):  
Naoki Fukata ◽  
Wipakorn Jevasuwan ◽  
Yonglie Sun ◽  
Yoshimasa Sugimoto

Abstract Control of surface defects and impurity doping are important keys to realizing devices that use semiconductor nanowires (NWs). As a structure capable of suppressing impurity scattering, p-Si/i (intrinsic)-Ge core-shell NWs with radial heterojunctions inside the NWs were formed. When forming NWs using a top-down method, the positions of the NWs can be controlled, but their surface is damaged. When heat treatment for repairing surface damage is performed, the surface roughness of the NWs closely depends on the kind of atmospheric gas. Oxidation and chemical etching prior to shell formation removes the surface damaged layer on p-SiNWs and simultaneously achieves a reduction in the diameter of the NWs. Finally, hole gas accumulation, which is important for suppressing impurity scattering, can be observed in the i-Ge layers of p-Si/i-Ge core-shell NWs.


Author(s):  
Sergei Vlassov ◽  
Sven Oras ◽  
Boris Polyakov ◽  
Edgars Butanovs ◽  
Andreas Kyritsakis ◽  
...  

2021 ◽  
Author(s):  
Amar Mohabir ◽  
Daniel Aziz ◽  
Amy Brummer ◽  
Kathleen Taylor ◽  
Eric Vogel ◽  
...  

Abstract We demonstrate a bottom-up process for programming the deposition of coaxial thin films aligned to the underlying dopant profile of semiconductor nanowires. Our process synergistically combines three distinct methods – vapor-liquid-solid (VLS) nanowire growth, selective coaxial lithography via etching of surfaces (SCALES), and area-selective atomic layer deposition (AS-ALD) – into a cohesive whole. Here, we study ZrO2 on Si nanowires as a model system. Si nanowires are first grown with an axially modulated n-Si/i-Si dopant profile. SCALES then yields coaxial poly(methyl methacrylate) (PMMA) masks on the n-Si regions. Subsequent AS-ALD of ZrO2 occurs on the exposed i-Si regions and not on those masked by PMMA. We show the spatial relationship between nanowire dopant profile, PMMA masks, and ZrO2 films, confirming the programmability of the process. The nanoscale resolution of our process coupled with the plethora of available AS-ALD chemistries promises a range of future opportunities to generate structurally complex nanoscale materials and electronic devices using entirely bottom-up methods.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Leila Balaghi ◽  
Si Shan ◽  
Ivan Fotev ◽  
Finn Moebus ◽  
Rakesh Rana ◽  
...  

AbstractTransistor concepts based on semiconductor nanowires promise high performance, lower energy consumption and better integrability in various platforms in nanoscale dimensions. Concerning the intrinsic transport properties of electrons in nanowires, relatively high mobility values that approach those in bulk crystals have been obtained only in core/shell heterostructures, where electrons are spatially confined inside the core. Here, it is demonstrated that the strain in lattice-mismatched core/shell nanowires can affect the effective mass of electrons in a way that boosts their mobility to distinct levels. Specifically, electrons inside the hydrostatically tensile-strained gallium arsenide core of nanowires with a thick indium aluminium arsenide shell exhibit mobility values 30–50 % higher than in equivalent unstrained nanowires or bulk crystals, as measured at room temperature. With such an enhancement of electron mobility, strained gallium arsenide nanowires emerge as a unique means for the advancement of transistor technology.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Dingshan Zheng ◽  
Hailu Wang ◽  
Ruoling Chen ◽  
Long Li ◽  
Jiaxiang Guo ◽  
...  

Abstract Tin sulfide semiconductor nanowires (NWs) have been widely investigated for photodetection applications because of their good optical and electrical properties. Herein, we synthesized n-type SnS2 NWs and then fabricated SnS2 NW photodetectors with a ferroelectric polymer side-gate. The strong electric field induced by ferroelectric polymer can effectively suppress the dark current and improve the detectivity in SnS2 NW photodetectors. The photodetectors after polarization depletion exhibit a high photoconductive gain of 4.0 × 105 and a high responsivity of 2.1 × 105 A W−1. Compared with devices without polarization depletion, the detectivity of polarization-depleted photodetectors is improved by at least two orders of magnitude, and the highest detectivity is 1.3 × 1016 Jones. Further, the rise and fall time are 56 and 91 ms respectively, which are about tens of times faster than those without polarization depletion. The device also shows a good spectral response from ultraviolet to near-infrared. This study demonstrates that ferroelectric materials can enhance optoelectronic properties of low-dimensional semiconductors for high-performance photodetectors.


2021 ◽  
Vol 11 (20) ◽  
pp. 9419
Author(s):  
Sergey Lazarev ◽  
Young Yong Kim ◽  
Luca Gelisio ◽  
Zhaoxia Bi ◽  
Ali Nowzari ◽  
...  

Semiconductor nanowires (NWs) have a broad range of applications for nano- and optoelectronics. The strain field of gallium nitride (GaN) NWs could be significantly changed when contacts are applied to them to form a final device, especially considering the piezoelectric properties of GaN. Investigation of influence of the metallic contacts on the structure of the NWs is of high importance for their applications in real devices. We have studied a series of different type of contacts and influence of the applied voltage bias on the contacted GaN NWs with the length of about 3 to 4 micrometers and with two different diameters of 200 nm and 350 nm. It was demonstrated that the NWs with the diameter of 200 nm are bend already by the interaction with the substrate. For all GaN NWs, significant structural changes were revealed after the contacts deposition. The results of our research may contribute to the future optoelectronic applications of the GaN nanowires.


Author(s):  
Kruti Wohra ◽  
Arun Kumar Diwakar ◽  
Anant G. Kulkarni

Semiconductor nanowires guarantee to give the structure squares to another age of nanoscale electronic and optoelectronic gadgets and display novel electronic and optical properties inferable from their special underlying one-dimensionality and conceivable quantum confinement impacts in two measurements. With an expansive choice of creations and band structures, these one-dimensional semiconductor nanostructures are viewed as the basic segments in a wide scope of potential nanoscale device applications. This review paper explains the basic properties showed by semiconductor nanowires. Novel properties including nanowire miniature hole lasing, phonon transport, interfacial security, and synthetic detecting are reviewed.


Sign in / Sign up

Export Citation Format

Share Document