Microstructures and Tensile Properties of GH4099 Alloy Fabricated by Laser Additive Manufacturing After Heat Treatment

2018 ◽  
Vol 45 (10) ◽  
pp. 1002003
Author(s):  
吕豪 Lü Hao ◽  
杨志斌 Yang Zhibin ◽  
王鑫 Wang Xin ◽  
喻春光 Yu Chunguang
2020 ◽  
Vol 57 (9) ◽  
pp. 091403
Author(s):  
亢红伟 Kang Hongwei ◽  
董志宏 Dong Zhihong ◽  
张炜 Zhang Wei ◽  
谢玉江 Xie Yujiang ◽  
迟长泰 Chi Changtai ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Leonhard Hitzler ◽  
Frank Alifui-Segbaya ◽  
Philipp Williams ◽  
Burkhard Heine ◽  
Michael Heitzmann ◽  
...  

The limitations of investment casting of cobalt-based alloys are claimed to be less problematic with significant improvements in metal additive manufacturing by selective laser melting (SLM). Despite these advantages, the metallic devices are likely to display mechanical anisotropy in relation to build orientations, which could consequently affect their performance “in vivo.” In addition, there is inconclusive evidence concerning the requisite composition and postprocessing steps (e.g., heat treatment to relieve stress) that must be completed prior to using the devices. In the current paper, we evaluate the microstructure of ternary cobalt-chromium-molybdenum (Co-Cr-Mo) and cobalt-chromium-tungsten (Co-Cr-W) alloys built with direct metal printing and LaserCUSING SLM systems, respectively, at 0°, 30°, 60°, and 90° inclinations (Φ) in as-built (AB) and heat-treated (HT) conditions. The study also examines the tensile properties (Young’s modulus, E; yield strength, RP0.2; elongation at failure, At; and ultimate tensile strength, Rm), relative density (RD), and microhardness (HV5) and macrohardness (HV20) as relevant physicomechanical properties of the alloys. Data obtained indicate improved tensile properties and HV values after a short and cost-effective heat-treatment cycle of Co-Cr-Mo alloys; however, the process did not homogenize the microstructure of the alloy. Annealing heat treatment of Co-Cr-W led to significant isotropic characteristics with increased E and At (except for Φ = 90°) in contrast to decreased RP0.2, Rm, and HV values, compared to the AB form. Similarly, the interlaced weld-bead structures in AB Co-Cr-W were removed during heat treatment, which led to a complete recrystallization of the microstructure. Both alloys exhibited defect-free microstructures with RD exceeding 99.5%.


Author(s):  
Leonhard Hitzler ◽  
Frank Alifui-Segbaya ◽  
Philipp Williams ◽  
Burkhard Heine ◽  
Michael Heitzmann ◽  
...  

The limitations of investment casting of cobalt-based alloys are claimed to be less problematic with significant improvements in metal additive manufacturing by selective laser melting (SLM). Despite these advantages, the metallic devices are likely to display mechanical anisotropy in relation to build orientations, which could consequently affect their performance ‘in vivo’. In addition, there are inconclusive evidence concerning the requisite composition and post-processing steps (e.g. heat-treatment to relieve stress) that must be completed prior to the devices being used. In the current paper, we evaluate the microstructure of ternary cobalt-chromium-molybdenum (Co-Cr-Mo) and cobalt-chromium-tungsten (Co-Cr-W) alloys built with Direct Metal Printing and LaserCUSING SLM systems respectively at 0°, 30°, 60° and 90° inclinations (Φ) in as-built (AB) and heat-treated (HT) conditions. The study also examines the tensile properties (Young's modulus, E; yield strength, RP0.2; elongation at failure, At and ultimate tensile strength, Rm), relative density (RD), and micro-hardness (HV5) and macro-hardness (HV20) as relevant physico-mechanical properties of the alloys. Data obtained indicate improved tensile properties and HV values after short and cost-effective heat-treatment cycle of Co-Cr-Mo alloy; however, the process did not homogenize the microstructure of the alloy. Annealing heat-treatment of Co-Cr-W led to significant isotropic characteristics with increased E and At (except for Φ = 90º) in contrast to decreased RP0.2, Rm and HV values, compared to the AB form. Similarly, the interlaced weld-bead structures in AB Co-Cr-W were removed during heat-treatment, which led to a complete recrystallization in the microstructure. Both alloys exhibited defect-free microstructures with RD exceeding 99.5%.


Sign in / Sign up

Export Citation Format

Share Document