post heat treatment
Recently Published Documents


TOTAL DOCUMENTS

351
(FIVE YEARS 118)

H-INDEX

26
(FIVE YEARS 6)

Author(s):  
Nehad Yousf ◽  
Amir Elzwawy ◽  
Emtinan Ouda ◽  
S. A. Mansour ◽  
El Shazly M. Duraia

Abstract In the present contribution, the 3D hollow structure of manganese cobalt oxide/carbon nanotubes (MnCo2O4/CNTs) nanocomposite was successfully synthesized through a co-precipitation procedure followed by post-heat treatment. The as-prepared samples were characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FESEM), Transmission electron microscopy (TEM), and vibrating sample magnetometer (VSM). Based on the obtained results, the surface of carbon nanotubes was coated uniformly in radial directions by manganese oxide (MnO2) nanosheets forming a flower-shaped structure. In the next step, cobalt oxide precursor was introduced to form MnCo2O4/CNTs nanocomposite. The XRD data confirms the formation of MnCo2O4/CNTs. The estimated values of the strain and the crystallite size based on the Williamson-Hall (W-H) method are calculated as 5.326×10-4 and 16 nm respectively. The fingerprint area of FTIR suggests the successful incorporation of MnO2 and cobalt oxide onto CNTs’ surfaces. The flower-shaped structure in the nanoscale is verified by the FESEM and TEM devices. Furthermore, the magnetic specifications revealed the paramagnetic with a small ferromagnetic component of the aforementioned MnCo2O4/CNTs nanocomposite.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3221
Author(s):  
Yan Xing ◽  
Jing Cheng ◽  
Heping Li ◽  
Dandan Lin ◽  
Yuting Wang ◽  
...  

Ceramic fiber photocatalysts fabricated by electrospinning hold great potential in alleviating global environmental and energy issues. However, many challenges remain in improving their photocatalytic efficiencies, such as the limited carrier lifetime and solar energy utilization. To overcome these predicaments, various smart strategies have been invented and realized in ceramic fiber photocatalysts. This review firstly attempts to summarize the fundamental principles and bottlenecks of photocatalytic processes. Subsequently, the approaches of doping, surface plasmon resonance, and up-conversion fluorescent to enlarge the light absorption range realized by precursor composition design, electrospinning parameter control, and proper post heat-treatment process are systematically introduced. Furthermore, methods and achievements of prolonging the lifetime of photogenerated carriers in electrospun ceramic fiber photocatalysts by means of introducing heterostructure and defective composition are reviewed in this article. This review ends with a summary and some perspectives on the future directions of ceramic fiber photocatalysts.


2021 ◽  
Vol 2077 (1) ◽  
pp. 012011
Author(s):  
A G Malikov ◽  
A.I. Ancharov

Abstract A study of laser welding of modern aluminum-lithium alloys has been carried out. Optimization of post heat treatment of laser welded joints has been carried out. The change in the structural-phase composition of welded joints was investigated. The strength of welded joints after heat treatment was equal to the strength of the base alloy.


2021 ◽  
Author(s):  
Samuel Ovalle ◽  
E. Viamontes ◽  
Tony Thomas

Digital Light Processing (DLP) 3D printing allows for the creation of parts with advanced engineering materials and geometries difficult to produce through conventional manufacturing techniques. Photosensitive resin monomers are activated with a UV-producing LCD screen to polymerize, layer by layer, forming the desired part. With the right mixture of photosensitive resin and advanced engineering powder material, useful engineering-grade parts can be produced. The Bison 1000 is a research-grade DLP printer that permits the user to change many parameters, in order to discover an optimal method for producing 3D parts of any material of interest. In this presentation, the process parameter optimization and their influence on the 3D printed parts through DLP technique will be discussed. The presentation is focused on developing 3D printable slurry, printing of complex ceramic lattice structures, as well as post heat treatment of these DLP-produced parts.


Sign in / Sign up

Export Citation Format

Share Document