Effect of solution temperature and cooling rate on microstructure and mechanical properties of laser solid forming Ti-6Al-4V alloy

2009 ◽  
Vol 7 (6) ◽  
pp. 498-501 ◽  
Author(s):  
张霜银 Shuangyin Zhang ◽  
林鑫 Xin Lin ◽  
陈静 Jing Chen ◽  
黄卫东 Weidong Huang
2019 ◽  
Vol 38 (2019) ◽  
pp. 892-896 ◽  
Author(s):  
Süleyman Tekeli ◽  
Ijlal Simsek ◽  
Dogan Simsek ◽  
Dursun Ozyurek

AbstractIn this study, the effect of solid solution temperature on microstructure and mechanical properties of the AA7075 alloy after T6 heat treatment was investigated. Following solid solution at five different temperatures for 2 hours, the AA7075 alloy was quenched and then artificially aged at 120∘C for 24 hours. Hardness measurements, microstructure examinations (SEM+EDS, XRD) and tensile tests were carried out for the alloys. The results showed that the increased solid solution temperature led to formation of precipitates in the microstructures and thus caused higher hardness and tensile strength.


2012 ◽  
Vol 52 (12) ◽  
pp. 2210-2219 ◽  
Author(s):  
Qiang Liu ◽  
Hongwei Zhang ◽  
Qiang Wang ◽  
Xiangkui Zhou ◽  
P^|^auml;r G. J^|^ouml;nsson ◽  
...  

2012 ◽  
Vol 182-183 ◽  
pp. 162-166
Author(s):  
Can Can Li ◽  
Hao Ran Geng ◽  
Zhen Yuan Li ◽  
Hai Ou Qin

In this paper, Al-12.6%Si/Al63Cu25Fe12 composites were fabricated by method of casting. The microstructure and chemical composition of Al63Cu25Fe12 quasicrystal alloy and Al-12.6%Si alloy reinforced by the quasicrystal were studied, and the mechanical properties of Al-12.6%Si composite were also measured. The results show that almost single quasicrystalline phases exist in the samples which are cast with the 1300°C melt. Quickly enough cooling rate and appropriate melt temperature are necessary for the formation of the quasicrystalline phase. In addition, Al-12.6%Si composite has optimal mechanical properties when the amount of Al63Cu25Fe12 quasicrystal is 3 wt%.


Metals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 742 ◽  
Author(s):  
Khan ◽  
Yu ◽  
Wang ◽  
Jiang

The effect of cooling rate, ranging from 6 to 1 °C/s, on microstructure and mechanical properties in the coarse-grained heat affected zone (CGHAZ) of electroslag welded pearlitic rail steel has been investigated by using confocal scanning laser microcopy (CSLM) and Gleeble 3500 thermo-mechanical simulator. During heating, the formed austenite was inhomogeneous with fractions of untransformed ferrite, which has influenced the pearlite transformation during cooling by providing additional nucleation sites to pearlite. During cooling, at 6 °C/s, the microstructure was composed of martensite and bainite with little pearlite. From 4 to 1 °C/s, microstructures were completely pearlite. Lowering the cooling rate of the CGHAZ from 4 to 1 °C/s increased the pearlite start temperature and reduced the pearlite growth rate. Meanwhile, this increase in pearlite start temperature enlarged the pearlite interlamellar spacing. Alternatively, increasing pearlite interlamellar spacing in the CGHAZ by lowering the cooling rate from 6 to 1 °C/s reduced the hardness and tensile strength, whereas toughness was found unaffected by the pearlite interlamellar spacing. It has been found that a cooling rate of 4 °C/s leads to the formation of pearlite with fine interlamellar spacing of 117 nm in the CGHAZ of electroslag welded pearlitic rail steel where hardness is 425 HV, tensile strength is 1077 MPa, and toughness is 9.1 J.


Sign in / Sign up

Export Citation Format

Share Document