scholarly journals Effects of Different Solid Solution Temperatures on Microstructure and Mechanical Properties of the AA7075 Alloy After T6 Heat Treatment

2019 ◽  
Vol 38 (2019) ◽  
pp. 892-896 ◽  
Author(s):  
Süleyman Tekeli ◽  
Ijlal Simsek ◽  
Dogan Simsek ◽  
Dursun Ozyurek

AbstractIn this study, the effect of solid solution temperature on microstructure and mechanical properties of the AA7075 alloy after T6 heat treatment was investigated. Following solid solution at five different temperatures for 2 hours, the AA7075 alloy was quenched and then artificially aged at 120∘C for 24 hours. Hardness measurements, microstructure examinations (SEM+EDS, XRD) and tensile tests were carried out for the alloys. The results showed that the increased solid solution temperature led to formation of precipitates in the microstructures and thus caused higher hardness and tensile strength.

2013 ◽  
Vol 747-748 ◽  
pp. 158-165
Author(s):  
Juan Qu ◽  
Kui Zhang ◽  
Ming Long Ma ◽  
Yong Jun Li ◽  
Xing Gang Li

In this study, Mg-7Gd-5Y-1Nd-0.5Zr alloy (EW75) was produced by melting method and then press-forged into large size plate. The properties of the Mg-7Gd-5Y-1.2Nd-0.5Zr alloy were optimized through T6 heat treatment. The microstructures of alloy were observed by means of optical microscopy (OM), scanning electron microscopy (SEM). Its mechanical properties under different heat treatment conditions were determined by tensile tests. The results indicated that increasing the solid solution temperature and prolonging the solid solution time can both lead to the dissolution of second phase in the alloy back into the matrix. The solid solution temperature affects the dissolution process more than the solid solution time. Grain growth occurred during the solid solution process. The grain size of the matrix enlarges with the increase of solid solution temperature. The tensile test result showed that the tensile strength of the alloy was significantly improved after T6 heat treatment. Its tensile strength in the same direction was nearly 40% up after T6 heat treatment. The analysis shows that T6 heat treatment can effectively eliminate the larger deformed precipitates and beneficial to the formation of hard precipitates, which leads to an improvement in the alloys tensile strength.


2019 ◽  
Vol 944 ◽  
pp. 64-72
Author(s):  
Qing Feng Yang ◽  
Cun Juan Xia ◽  
Ya Qi Deng

Bulky sample was made by using TIG wire and arc additive manufacturing (WAAM) technology, in which Ф1.6 mm filler wire of in-situ TiB2/Al-Si composites was selected as deposition metal, following by T6 heat treatment. The microstructure and mechanical properties of the bulky sample before and after heat treatment were analyzed. Experimental results showed that the texture of the original samples parallel to the weld direction and perpendicular to the weld direction was similar consisting of columnar dendrites and equiaxed crystals. After T6 heat treatment, the hardness of the sample was increased to 115.85 HV from 62.83 HV, the yield strength of the sample was 273.33 MPa, the average tensile strength was 347.33 MPa, and the average elongation after fracture was 7.96%. Although pore defects existed in the fracture, yet the fracture of the sample was ductile fracture.


2016 ◽  
Vol 850 ◽  
pp. 762-767
Author(s):  
Shun Cheng Wang ◽  
Dong Fu Song ◽  
Jing Xu ◽  
Kai Hong Zheng

In the present investigation the casting-forging integrated technology was adopted to manufacture Al-1.1Mg-0.6Si-0.4Cu alloy automobile brake calipers. The effect of forging pressure on the microstructure and mechanical properties of Al-1.1Mg-0.6Si-0.4Cu alloy calipers were studied. The results showed that the shrinkage porosities and cracks in the Al-1.1Mg-0.6Si-0.4Cu alloy calipers could be removed by the forging process. The ultimate tensile strength and elongation of Al-1.1Mg-0.6Si-0.4Cu alloy calipers increased with the increase of forging pressure. When the forging pressure was 120 MPa, the ultimate tensile strength and elongation of Al-1.1Mg-0.6Si-0.4Cu alloy calipers with T6 heat treatment were 365.3 MPa and 11.5%, which were improved by 22.8% and 38.2%, respectively compared with that of Al-1.1Mg-0.6Si-0.4Cu alloy calipers without forging. The tensile fracture images revealed that the fracture modes of Al-1.1Mg-0.6Si-0.4Cu alloy calipers were more ductile at higher forging pressure.


2010 ◽  
Vol 148-149 ◽  
pp. 346-352
Author(s):  
Dong Nan Li ◽  
Wen Zhe Chen ◽  
Jun Tian

The semi-solid slurry of AZ91D magnesium alloy was prepared by twin-screw stirring mixer, the microstructure and mechanical properties of semi-solid formed magnesium alloy AZ91D produced by rheo-diecasting and conventional liquid die casting were investigated, respectively. The strengthen mechanism of the semi-solid formed magnesium alloy after heat treatment was analysed by EDS. The results show that the mechanical properties of semi-solid formed magnesium alloy can be enhanced markedly by T4 and T6 heat treatment, owing to decrease of the porosity and less segregation in casting, brittle eutectic compounds dissolves gradually into α-Mg matrix, and the primary phase α-Mg decomposes in the course of heat treatment. In as-cast state, the tensile strength, elongation and hardness of semi-solid formed magnesium alloy AZ91D are 222MPa, 2.3% and 74 HBS, respectively. In T4 heat treatment state, the tensile strength and elongation are increased by 13% and 210%, and in T6 heat treatment state, the tensile strength and hardness are increased by 11% and 16%. The mechanical properties of castings formed by conventional liquid die casting are deteriorated distinctly after T6 heat treatment due to its porosity and crack defects.


2018 ◽  
Vol 284 ◽  
pp. 615-620 ◽  
Author(s):  
R.M. Baitimerov ◽  
P.A. Lykov ◽  
L.V. Radionova

TiAl6V4 titanium base alloy is widely used in aerospace and medical industries. Specimens for tensile tests from TiAl6V4 with porosity less than 0.5% was fabricated by selective laser melting (SLM). Specimens were treated using two heat treatment procedures, third batch of specimens was tested in as-fabricated statement after machining. Tensile tests were carried out at room temperature. Microstructure and mechanical properties of SLM fabricated TiAl6V4 after different heat treatments were investigated.


2017 ◽  
Vol 898 ◽  
pp. 124-130 ◽  
Author(s):  
Shu Min Xu ◽  
Xin Ying Teng ◽  
Xing Jing Ge ◽  
Jin Yang Zhang

In this paper, the microstructure and mechanical properties of the as-cast and heat treatment of Mg-Zn-Nd alloy was investigated. The alloy was manufactured by a conventional casting method, and then subjected to a heat treatment. The results showed that the microstructure of as-cast alloy was comprised of α-Mg matrix and Mg12Nd phase. With increase of Nd content, the grain size gradually decreased from 25.38 μm to 9.82 μm. The ultimate tensile strength and elongation at room temperature of the Mg94Zn2Nd4 alloy can be reached to 219.63 MPa and 5.31%. After heat treatment, part of the second phase dissolved into the magnesium matrix and the grain size became a little larger than that of the as-cast. The ultimate tensile strength was declined by about 2.5%, and the elongation was increased to 5.47%.


2014 ◽  
Vol 915-916 ◽  
pp. 576-582 ◽  
Author(s):  
H. C. Wu ◽  
B. Yang ◽  
Ming Xian Zhang ◽  
Sheng Long Wang ◽  
Y. Z. Shi

The effect of forging and solution temperature on the microstructure and mechanical properties of 316LN stainless steel has been investigated by optical microscope, tensile testing machine and scanning electron microscope (SEM). The results show that the average grain size of the steel was refined from 150μm to 70μm after forging and solution treatment. With increasing solution temperature, the tensile strength and yield strength decreased. On the contrary, the elongation of the steel increased with increasing solution temperature except at 1200°C. The tensile strength of the samples forged at 1100°C is better than those of the samples forged at 1000 and 1200°Cafter solution treatment. Tensile fracture morphologies observation showed that all the specimens have ductile fracture morphologies. With increasing solution temperature, the toughness of the steel becomes better and better except at 1200°C. Both the microstructure and mechanical properties of the 316LN stainless steel have been improved after forging at 1100°C and following by solution treatment at 1150°C.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Yilong Han ◽  
Songbai Xue ◽  
Renli Fu ◽  
Lihao Lin ◽  
Zhongqiang Lin ◽  
...  

This work focused on the influence of hydrogen content on the microstructure and mechanical properties of ER5183 Al-Mg-Mn alloy wires for aluminum alloy welding. The hydrogen content of the ER5183 wires was measured, the macroscopic and microscopic morphologies of fractures were observed as well as the microstructure of the wires, and the tensile strength of the wires was also tested and investigated. The experimental results demonstrated three typical irregular macroscopic fractures of the wires appeared during the drawing process when the hydrogen content exceeded 0.23 μg/g. In the meantime, the aggregated pores were observed in the microstructure of the ϕ5.2 mm wire with the hydrogen content of 0.38 μg/g. Such defects may become the origin of cracks in subsequent processing and tensile tests. Moreover, higher hydrogen content in the ϕ5.2 mm welding wire will bring obvious changes in the fracture surface, which are internal cracks and micropores replacing the original uniform and compact dimples. With the higher hydrogen content, the tensile strength and plastic strain rate of ϕ1.2 mm wires would decrease. At the same time, unstable crack propagation would occur during the process of plastic deformation, leading to fracture. Considering the mechanical properties and microstructure, the hydrogen content of the ER5183 wires should be controlled below 0.23 μg/g.


Sign in / Sign up

Export Citation Format

Share Document