Two-dimensional non-reconstruction compressive sensing adaptive target detection algorithm

2019 ◽  
Vol 48 (1) ◽  
pp. 126001
Author(s):  
曹文焕 Cao Wenhuan ◽  
黄树彩 Huang Shucai ◽  
赵 炜 Zhao Wei ◽  
黄 达 Huang Da
Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 567 ◽  
Author(s):  
Wen-Huan Cao ◽  
Shu-Cai Huang

By applying compressive sensing to infrared imaging systems, the sampling and transmitting time can be remarkably reduced. Therefore, in order to meet the real-time requirements of infrared small target detection tasks in the remote sensing field, many approaches based on compressive sensing have been proposed. However, these approaches need to reconstruct the image from the compressive domain before detecting targets, which is inefficient due to the complex recovery algorithms. To overcome this drawback, in this paper, we propose a two-dimensional adaptive threshold algorithm based on compressive sensing for infrared small target detection. Instead of processing the reconstructed image, our algorithm focuses on directly detecting the target in the compressive domain, which reduces both the time and memory requirements for image recovery. First, we directly subtract the spatial background image in the compressive domain of the original image sampled by the two-dimensional measurement model. Then, we use the properties of the Gram matrix to decode the subtracted image for further processing. Finally, we detect the targets by employing the advanced adaptive threshold method to the decoded image. Experiments show that our algorithm can achieve an average 100% detection rate, with a false alarm rate lower than 0.4%, and the computational time is within 0.3 s, on average.


2017 ◽  
Vol 56 (4) ◽  
pp. 041312 ◽  
Author(s):  
Daniel Gedalin ◽  
Yaniv Oiknine ◽  
Isaac August ◽  
Dan G. Blumberg ◽  
Stanley R. Rotman ◽  
...  

Author(s):  
Qi Hu ◽  
Lang Zhai

At present, the application of deep learning algorithms in two-dimensional color image detection is being continuously innovated and broken. With the popularity of depth cameras, color image detection methods with depth information need to be upgraded. To solve this problem, a multi-target detection algorithm based on 3D DSF R-CNN (Double Stream Faster R-CNN, Convolution Neural Network based on Candidate Region) is proposed in this paper. The RGB information and the depth information of the image are given to two input elements of the convolution network with the same structure and weight sharing, and an optimal fusion weight algorithm is used to determine the weight of the fusion target in accordance with the recognition accuracy of the recognition targets under the single modal information, so as to ensure the most efficient fusion result. After several convolution operations, the independent features are extracted and the two networks are fused according to the optimal weights in the convolution layer. With the conducting of convolution and extract the fused features, and finally get the output through the full link layer. Compared with the previous two-dimensional convolution network algorithm, this algorithm improves the detection rate and success rate while ensuring the detection time. The experimental result shows that this method has strong robustness for complex illumination and partial occlusion, and has excellent detection results under non-restrictive conditions.


Author(s):  
Priya R. Kamath ◽  
Kedarnath Senapati ◽  
P. Jidesh

Speckles are inherent to SAR. They hide and undermine several relevant information contained in the SAR images. In this paper, a despeckling algorithm using the shrinkage of two-dimensional discrete orthonormal S-transform (2D-DOST) coefficients in the transform domain along with shock filter is proposed. Also, an attempt has been made as a post-processing step to preserve the edges and other details while removing the speckle. The proposed strategy involves decomposing the SAR image into low and high-frequency components and processing them separately. A shock filter is used to smooth out the small variations in low-frequency components, and the high-frequency components are treated with a shrinkage of 2D-DOST coefficients. The edges, for enhancement, are detected using a ratio-based edge detection algorithm. The proposed method is tested, verified, and compared with some well-known models on C-band and X-band SAR images. A detailed experimental analysis is illustrated.


Sign in / Sign up

Export Citation Format

Share Document