Multi-Layer Perceptron Pattern Recognition of Handwriting Ink Based on PLS-DA Raman Spectral Feature Extraction

2021 ◽  
Vol 58 (1) ◽  
pp. 0130002
Author(s):  
王晓宾 Wang Xiaobin ◽  
马枭 Ma Xiao ◽  
杨蕾 Yang Lei ◽  
李春宇 Li Chunyu
Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 114
Author(s):  
Tiziano Zarra ◽  
Mark Gino K. Galang ◽  
Florencio C. Ballesteros ◽  
Vincenzo Belgiorno ◽  
Vincenzo Naddeo

Instrumental odour monitoring systems (IOMS) are intelligent electronic sensing tools for which the primary application is the generation of odour metrics that are indicators of odour as perceived by human observers. The quality of the odour sensor signal, the mathematical treatment of the acquired data, and the validation of the correlation of the odour metric are key topics to control in order to ensure a robust and reliable measurement. The research presents and discusses the use of different pattern recognition and feature extraction techniques in the elaboration and effectiveness of the odour classification monitoring model (OCMM). The effect of the rise, intermediate, and peak period from the original response curve, in collaboration with Linear Discriminant Analysis (LDA) and Artificial Neural Networks (ANN) as a pattern recognition algorithm, were investigated. Laboratory analyses were performed with real odour samples collected in a complex industrial plant, using an advanced smart IOMS. The results demonstrate the influence of the choice of method on the quality of the OCMM produced. The peak period in combination with the Artificial Neural Network (ANN) highlighted the best combination on the basis of high classification rates. The paper provides information to develop a solution to optimize the performance of IOMS.


2020 ◽  
Vol 13 (1) ◽  
pp. 9
Author(s):  
Fanqiang Kong ◽  
Kedi Hu ◽  
Yunsong Li ◽  
Dan Li ◽  
Shunmin Zhao

Recently, the rapid development of multispectral imaging technology has received great attention from many fields, which inevitably involves the image transmission and storage problem. To solve this issue, a novel end-to-end multispectral image compression method based on spectral–spatial feature partitioned extraction is proposed. The whole multispectral image compression framework is based on a convolutional neural network (CNN), whose innovation lies in the feature extraction module that is divided into two parallel parts, one is for spectral and the other is for spatial. Firstly, the spectral feature extraction module is used to extract spectral features independently, and the spatial feature extraction module is operated to obtain the separated spatial features. After feature extraction, the spectral and spatial features are fused element-by-element, followed by downsampling, which can reduce the size of the feature maps. Then, the data are converted to bit-stream through quantization and lossless entropy encoding. To make the data more compact, a rate-distortion optimizer is added to the network. The decoder is a relatively inverse process of the encoder. For comparison, the proposed method is tested along with JPEG2000, 3D-SPIHT and ResConv, another CNN-based algorithm on datasets from Landsat-8 and WorldView-3 satellites. The result shows the proposed algorithm outperforms other methods at the same bit rate.


2014 ◽  
Vol 608-609 ◽  
pp. 459-467 ◽  
Author(s):  
Xiao Yu Gu

The paper researches a recognition algorithm of modulation signal and modulation modes. The modulation modes to be recognized include 2ASK, 2FSK, 2PSK, 4ASK, 4FSK and 4PSK modulation. There are two methods recognizing modulation modes of digital signal, method based on decision theory and pattern-recognition method based on feature extraction. The method based on decision theory is not suitable for recognition with multiple modulation modes. The core of pattern recognition based on feature extraction is selection of feature parameters. So the paper uses the feature parameters with simple calculation, easy to be implemented and high recognition rate as the core. The extraction of feature parameters is based on instant feature of modulation signal after Hilbert transformation.


1996 ◽  
Vol 35 (6) ◽  
pp. 834-840 ◽  
Author(s):  
A. Rosemary Tate ◽  
Des Watson ◽  
Stephen Eglen ◽  
Theodores N. Arvanitis ◽  
E. Louise Thomas ◽  
...  

2021 ◽  
Vol 63 (8) ◽  
pp. 465-471
Author(s):  
Shang Zhiwu ◽  
Yu Yan ◽  
Geng Rui ◽  
Gao Maosheng ◽  
Li Wanxiang

Aiming at the local fault diagnosis of planetary gearbox gears, a feature extraction method based on improved dynamic time warping (IDTW) is proposed. As a calibration matching algorithm, the dynamic time warping method can detect the differences between a set of time-domain signals. This paper applies the method to fault diagnosis. The method is simpler and more intuitive than feature extraction methods in the frequency domain and the time-frequency domain, avoiding their limitations and disadvantages. Due to the shortcomings of complex calculation, singularity and poor robustness, the paper proposes an improved method. Finally, the method is verified by envelope spectral feature analysis and the local fault diagnosis of gears is realised.


Sign in / Sign up

Export Citation Format

Share Document