Assessing Binocular Central Visual Field and Binocular Eye Movements in a Dichoptic Viewing Condition

Author(s):  
Rajkumar N. Raveendran ◽  
Arun K. Krishnan
2019 ◽  
Author(s):  
Antimo Buonocore ◽  
Olaf Dimigen ◽  
David Melcher

AbstractHumans actively sample their environment with saccadic eye movements to bring relevant information into high-acuity foveal vision. Despite being lower in resolution, peripheral information is also available prior to each saccade. How pre-saccadic extrafoveal preview of a visual object influences its post-saccadic processing is still an unanswered question. Here, we investigated this question by simultaneously recording behavior and fixation-related brain potentials while human subjects made saccades to face stimuli. We manipulated the relationship between pre-saccadic “previews” and post-saccadic images to explicitly isolate the influences of the former. Subjects performed a gender discrimination task on a newly foveated face under three preview conditions: phase-scrambled face, incongruent face (different identity from the foveated face), and congruent face (same identity). As expected, reaction times were faster after a congruent-face preview compared to the phase-scrambled and incongruent conditions. Importantly, a face preview (either incongruent or congruent) resulted in a strong reduction of post-saccadic neural responses. Specifically, we analyzed the classic face-selective N170 component at occipito-temporal EEG electrodes, which was still present in our experiments with active looking. We found that this component was strongly attenuated for face preview conditions compared to scrambled conditions. This large and long-lasting decrease in evoked activity is consistent with an active prediction mechanism influencing category-specific neural processing at the start of a new fixation. These findings constrain theories of visual stability and show that the extrafoveal preview methodology can be a useful tool to investigate its underlying mechanisms.Significance StatementNeural correlates of object recognition have traditionally been studied by flashing stimuli to the central visual field. This procedure differs in fundamental ways from natural vision, where viewers actively sample the environment with eye movements and also obtain a low-resolution preview of soon-to-be-fixated objects. Here we show that the N170, a classic electrophysiological marker of the structural processing of faces, also occurs during a more natural viewing condition but is massively reduced due to extrafoveal preprocessing (preview benefit). Our results therefore highlight the importance of peripheral vision during trans-saccadic processing in building a coherent and stable representation of the world around us.


2018 ◽  
Author(s):  
Fatima Maria Felisberti

Visual field asymmetries (VFA) in the encoding of groups rather than individual faces has been rarely investigated. Here, eye movements (dwell time (DT) and fixations (Fix)) were recorded during the encoding of three groups of four faces tagged with cheating, cooperative, or neutral behaviours. Faces in each of the three groups were placed in the upper left (UL), upper right (UR), lower left (LL), or lower right (LR) quadrants. Face recognition was equally high in the three groups. In contrast, the proportion of DT and Fix were higher for faces in the left than the right hemifield and in the upper rather than the lower hemifield. The overall time spent looking at the UL was higher than in the other quadrants. The findings are relevant to the understanding of VFA in face processing, especially groups of faces, and might be linked to environmental cues and/or reading habits.


2021 ◽  
Vol 223 ◽  
pp. 229-240
Author(s):  
Eren Ekici ◽  
Sasan Moghimi ◽  
Huiyuan Hou ◽  
James Proudfoot ◽  
Linda M. Zangwill ◽  
...  

1980 ◽  
Vol 50 (2) ◽  
pp. 631-636
Author(s):  
Evans Mandes

Post-exposural eye movements were studied in 32 adults and 24 7-yr.-old children. Stimuli were binary figures exposed tachistoscopically in both visual fields simultaneously. The data showed significant correlations between direction of eye movement and locus of recognition for both children and adults. No significant differences were found in frequencies of eye movements of children and adults. The data are interpreted in terms of the facilitative effects of post-exposural eye movements upon perception for both groups.


Author(s):  
Christian Wolf ◽  
Markus Lappe

AbstractHumans and other primates are equipped with a foveated visual system. As a consequence, we reorient our fovea to objects and targets in the visual field that are conspicuous or that we consider relevant or worth looking at. These reorientations are achieved by means of saccadic eye movements. Where we saccade to depends on various low-level factors such as a targets’ luminance but also crucially on high-level factors like the expected reward or a targets’ relevance for perception and subsequent behavior. Here, we review recent findings how the control of saccadic eye movements is influenced by higher-level cognitive processes. We first describe the pathways by which cognitive contributions can influence the neural oculomotor circuit. Second, we summarize what saccade parameters reveal about cognitive mechanisms, particularly saccade latencies, saccade kinematics and changes in saccade gain. Finally, we review findings on what renders a saccade target valuable, as reflected in oculomotor behavior. We emphasize that foveal vision of the target after the saccade can constitute an internal reward for the visual system and that this is reflected in oculomotor dynamics that serve to quickly and accurately provide detailed foveal vision of relevant targets in the visual field.


1993 ◽  
Vol 10 (1) ◽  
pp. 159-171 ◽  
Author(s):  
Robert Desimone ◽  
Jeffrey Moran ◽  
Stanley J. Schein ◽  
Mortimer Mishkin

AbstractThe classically defined receptive fields of V4 cells are confined almost entirely to the contralateral visual field. However, these receptive fields are often surrounded by large, silent suppressive regions, and stimulating the surrounds can cause a complete suppression of response to a simultaneously presented stimulus within the receptive field. We investigated whether the suppressive surrounds might extend across the midline into the ipsilateral visual field and, if so, whether the surrounds were dependent on the corpus callosum, which has a widespread distribution in V4. We found that the surrounds of more than half of the cells tested in the central visual field representation of V4 crossed into the ipsilateral visual field, with some extending up to at least 16 deg from the vertical meridian. Much of this suppression from the ipsilateral field was mediated by the corpus callosum, as section of the callosum dramatically reduced both the strength and extent of the surrounds. There remained, however, some residual suppression that was not further reduced by addition of an anterior commissure lesion. Because the residual ipsilateral suppression was similar in magnitude and extent to that found following section of the optic tract contralateral to the V4 recording, we concluded that it was retinal in origin. Using the same techniques employed in V4, we also mapped the ipsilateral extent of surrounds in the foveal representation of VI in an intact monkey. Results were very similar to those in V4 following commissural or contralateral tract sections. The findings suggest that V4 is a central site for long-range interactions both within and across the two visual hemifields. Taken with previous work, the results are consistent with the notion that the large suppressive surrounds of V4 neurons contribute to the neural mechanisms of color constancy and figure-ground separation.


Sign in / Sign up

Export Citation Format

Share Document