scholarly journals Enhancing Reading Advancement Using Eye Gaze Tracking

2020 ◽  
Vol sceeer (3d) ◽  
pp. 59-64
Author(s):  
Saadaldeen Ahmed ◽  
Mustafa Fadhil ◽  
Salwa Abdulateef

This research aims to understand the enhancing reading advancement using eye gaze tracking in regards to pull the increase of time interacting with such devices along. In order to realize that, user should have a good understanding of the reading process and of the eye gaze tracking systems; as well as a good understanding of the issues existing while using eye gaze tracking system for reading process. Some issues are very common, so our proposed implementation algorithm compensate these issues. To obtain the best results possible, two mains algorithm have been implemented: the baseline algorithm and the algorithm to smooth the data. The tracking error rate is calculated based on changing points and missed changing points. In [21], a previous implementation on the same data was done and the final tracking error rate value was of 126%. The tracking error rate value seems to be abnormally high but this value is actually useful as described in [21]. For this system, all the algorithms used give a final tracking error rate value of 114.6%. Three main origins of the accuracy of the eye gaze reading were normal fixation, regression, skip fixation; and accuracies are displayed by the tracking rate value obtained. The three main sources of errors are the calibration drift, the quality of the setup and the physical characteristics of the eyes. For the tests, the graphical interface uses characters with an average height of 24 pixels for the text. By considering that the subject was approximately at 60 centimeters of the tracker. The character on the screen represents an angle of ±0.88◦; which is just above the threshold of ±0.5◦ imposed by the physical characteristics of the eyeball for the advancement of reading using eye gaze tracking.

2009 ◽  
Vol 30 (12) ◽  
pp. 1144-1150 ◽  
Author(s):  
Diego Torricelli ◽  
Michela Goffredo ◽  
Silvia Conforto ◽  
Maurizio Schmid

Author(s):  
Yoshinobu Ebisawa ◽  
Kazuki Abo ◽  
Kiyotaka Fukumoto

Author(s):  
Cheng-Lung Jen ◽  
Yen-Lin Chen ◽  
You-Jie Lin ◽  
Chao-Hsien Lee ◽  
Augustine Tsai ◽  
...  

2015 ◽  
Vol 31 (4) ◽  
pp. 277-294 ◽  
Author(s):  
Pradipta Biswas ◽  
Pat Langdon

2021 ◽  
Vol 2120 (1) ◽  
pp. 012030
Author(s):  
J K Tan ◽  
W J Chew ◽  
S K Phang

Abstract The field of Human-Computer Interaction (HCI) has been developing tremendously since the past decade. The existence of smartphones or modern computers is already a norm in society these days which utilizes touch, voice and typing as a means for input. To further increase the variety of interaction, human eyes are set to be a good candidate for another form of HCI. The amount of information which the human eyes contain are extremely useful, hence, various methods and algorithm for eye gaze tracking are implemented in multiple sectors. However, some eye-tracking method requires infrared rays to be projected into the eye of the user which could potentially cause enzyme denaturation when the eye is subjected to those rays under extreme exposure. Therefore, to avoid potential harm from the eye-tracking method that utilizes infrared rays, this paper proposes an image-based eye tracking system using the Viola-Jones algorithm and Circular Hough Transform (CHT) algorithm. The proposed method uses visible light instead of infrared rays to control the mouse pointer using the eye gaze of the user. This research aims to implement the proposed algorithm for people with hand disability to interact with computers using their eye gaze.


Sign in / Sign up

Export Citation Format

Share Document