scholarly journals Subsurface Vortex Control Parametric Study at Submersible Pump Intake Using Plate-Type Floor Splitters

Author(s):  
Zambri Harun ◽  
Tajul Ariffin Norizan ◽  
Shahrir Abdullah ◽  
Mazharul Islam
2000 ◽  
Vol 122 (3) ◽  
pp. 136-141 ◽  
Author(s):  
Jesus R. Rodriguez ◽  
Fathi Finaish ◽  
Shari Dunn-Norman

A shroud is commonly used around the motor of an electrical submersible pump (ESP) to accelerate reservoir fluids past the motor for cooling. Standard practice has been to design the shroud/motor configuration relative to the casing using a minimum fluid velocity of 0.3048 m/s (1 ft/s) rule of thumb as a production strategy. The increase in the use of ESPs to exploit heavy oil reservoirs has brought up the necessity of revising this rule in order to prevent motor burnouts. A parametric study has been conducted using the computational fluid dynamics software CFX4.2 to examine the heat transfer behavior of the shroud motor configuration as a function of motor/shroud standoff. The objective of this effort is to examine the validity of the historical rule of thumb for heavy oils. Results for a case study on an oil with a viscosity of 78 cp @ 320 K are presented. Further, to explore the possibility of enhancing the heat transfer characteristics, the flow configuration was modified by incorporating several openings on the shroud. Based on the obtained results, it can be concluded that fluid velocity should be kept around 0.85 m/s (2.8 ft/s) as opposed to 1 ft/s to assure proper cooling of the motor. Also, flow redistribution by proper placement of the slots on the shroud may produce better heat transfer between the oil and the motor wall. [S0195-0738(00)00703-2]


2020 ◽  
Vol 2 (1) ◽  
pp. 19-24
Author(s):  
Sakhr Mohammed Sultan ◽  
Chih Ping Tso ◽  
Ervina Efzan Mohd Noor ◽  
Fadhel Mustafa Ibrahim ◽  
Saqaff Ahmed Alkaff

Photovoltaic Thermal Solar Collector (PVT) is a hybrid technology used to produce electricity and heat simultaneously. Current enhancements in PVT are to increase the electrical and thermal efficiencies. Many PVT factors such as type of absorber, thermal conductivity, type of PV module and operating conditions are important parameters that can control the PVT performance. In this paper, an analytical model, using energy balance equations, is studied for PVT with an improved parallel flow absorber. The performance is calculated for a typical sunny weather in Malaysia. It was found that the maximum electrical and thermal efficiencies are 12.9 % and 62.6 %, respectively. The maximum outlet water temperature is 59 oC.


Author(s):  
Tanya Pehlivanova

Global warming has led to lower levels of the water basins. Groundwater levels also decrease. Sometimes they fall so much so that submersible pumps in the wells remain almost dry and even in short work cycles get damaged. Their repairs are very expensive and labour intensive. An algorithm for management and protection of submersible pump is proposed in the paper. It uses 5 level sensors. It allows full utilization of the wells capacity and protects the pump motors from premature wear due to frequent switching on and off.


Sign in / Sign up

Export Citation Format

Share Document