scholarly journals Color Systems and Color Image Enhancement Methods

Author(s):  
Akira Taguchi

There are many color systems. Some systems are correspond to the human visual system, such as the Munsell color system. Other systems are formulated to ease data processing in machines, such as RGB color space. At first, Munsell color system is introduced in this paper. Next, RGB color system and hue-saturation-intensity (HSI) color system which is derived from RGB color systems are reviewed. HSI color system is important, because HSI color system is closely related to Munsell color system. We introduce the advantage and drawbacks of the conventional HSI color space. Furthermore, the improved HSI color system is introduced. The second half of this paper, we introduce a lot of color image enhancement methods based on the histogram equalization or the differential histogram equalization. Since hue preserving is necessary for color image processing, intensity processing methods by using both intensity and saturation in HSI color space are reviewed. Finally, hue preserving color image enhancement methods in RGB color system are explained.

2021 ◽  
Vol 7 (8) ◽  
pp. 150
Author(s):  
Kohei Inoue ◽  
Minyao Jiang ◽  
Kenji Hara

This paper proposes a method for improving saturation in the context of hue-preserving color image enhancement. The proposed method handles colors in an RGB color space, which has the form of a cube, and enhances the contrast of a given image by histogram manipulation, such as histogram equalization and histogram specification, of the intensity image. Then, the color corresponding to a target intensity is determined in a hue-preserving manner, where a gamut problem should be taken into account. We first project any color onto a surface in the RGB color space, which bisects the RGB color cube, to increase the saturation without a gamut problem. Then, we adjust the intensity of the saturation-enhanced color to the target intensity given by the histogram manipulation. The experimental results demonstrate that the proposed method achieves higher saturation than that given by related methods for hue-preserving color image enhancement.


2014 ◽  
Vol 631-632 ◽  
pp. 478-481
Author(s):  
Feng Xiao ◽  
Shui Qing Miao ◽  
Li Guo

The three components of the color images enhance the images directly in the RGB color space, will cause distortion of the image. So our paper will convert true color image from RGB space to YIQ space, the holomorphic filtering and histogram equalization are executed on Y component to make the image enhancement, the Y component contains a lot of image information; finally, the image is converted from YIQ color space to RGB color space once again. Experimental results show that the approach which were proposed in the paper, Combined with the method of holomorphic filtering and histogram equalization to overcome the uneven illumination, the image is dark and other shortcomings to achieve satisfactory enhancement.


Author(s):  
HUA YANG ◽  
MASAAKI KASHIMURA ◽  
NORIKADU ONDA ◽  
SHINJI OZAWA

This paper describes a new system for extracting and classifying bibliography regions from the color image of a book cover. The system consists of three major components: preprocessing, color space segmentation and text region extraction and classification. Preprocessing extracts the edge lines of the book and geometrically corrects and segments the input image, into the parts of front cover, spine and back cover. The same as all color image processing researches, the segmentation of color space is an essential and important step here. Instead of RGB color space, HSI color space is used in this system. The color space is segmented into achromatic and chromatic regions first; and both the achromatic and chromatic regions are segmented further to complete the color space segmentation. Then text region extraction and classification follow. After detecting fundamental features (stroke width and local label width) text regions are determined. By comparing the text regions on front cover with those on spine, all extracted text regions are classified into suitable bibliography categories: author, title, publisher and other information, without applying OCR.


2019 ◽  
Vol 12 (9) ◽  
pp. 4713-4724
Author(s):  
Chaojun Shi ◽  
Yatong Zhou ◽  
Bo Qiu ◽  
Jingfei He ◽  
Mu Ding ◽  
...  

Abstract. Cloud segmentation plays a very important role in astronomical observatory site selection. At present, few researchers segment cloud in nocturnal all-sky imager (ASI) images. This paper proposes a new automatic cloud segmentation algorithm that utilizes the advantages of deep-learning fully convolutional networks (FCNs) to segment cloud pixels from diurnal and nocturnal ASI images; it is called the enhancement fully convolutional network (EFCN). Firstly, all the ASI images in the data set from the Key Laboratory of Optical Astronomy at the National Astronomical Observatories of Chinese Academy of Sciences (CAS) are converted from the red–green–blue (RGB) color space to hue saturation intensity (HSI) color space. Secondly, the I channel of the HSI color space is enhanced by histogram equalization. Thirdly, all the ASI images are converted from the HSI color space to RGB color space. Then after 100 000 iterative trainings based on the ASI images in the training set, the optimum associated parameters of the EFCN-8s model are obtained. Finally, we use the trained EFCN-8s to segment the cloud pixels of the ASI image in the test set. In the experiments our proposed EFCN-8s was compared with four other algorithms (OTSU, FCN-8s, EFCN-32s, and EFCN-16s) using four evaluation metrics. Experiments show that the EFCN-8s is much more accurate in cloud segmentation for diurnal and nocturnal ASI images than the other four algorithms.


Sign in / Sign up

Export Citation Format

Share Document