true color image
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 1)

H-INDEX

6
(FIVE YEARS 0)

Author(s):  
Sunanda Das ◽  
Sourav De ◽  
Siddhartha Bhattacharyya

In this chapter, a quantum-induced modified-genetic-algorithm-based FCM clustering approach is proposed for true color image segmentation. This approach brings down the early convergence problem of FCM to local minima point, increases efficacy of conventional genetic algorithm, and decreases the computational cost and execution time. Effectiveness of genetic algorithm is tumid by modifying some features in population initialization and crossover section. To speed up the execution time as well as make it cost effective and also to get more optimized class levels some quantum computing phenomena like qubit, superposition, entanglement, quantum rotation gate are induced to modified genetic algorithm. Class levels which are yield now fed to FCM as initial input class levels; thus, the ultimate segmented results are formed. Efficiency of proposed method are compared with classical modified-genetic-algorithm-based FCM and conventional FCM based on some standard statistical measures.





2020 ◽  
Vol 10 (19) ◽  
pp. 6862 ◽  
Author(s):  
Hamail Ayaz ◽  
Muhammad Ahmad ◽  
Ahmed Sohaib ◽  
Muhammad Naveed Yasir ◽  
Martha A. Zaidan ◽  
...  

Minced meat substitution is one of the most common frauds which not only affects consumer health but impacts their lifestyles and religious customs as well. A number of methods have been proposed to overcome these frauds; however, these mostly rely on laboratory measures and are often subject to human error. Therefore, this study proposes novel hyperspectral imaging (400–1000 nm) based non-destructive isos-bestic myoglobin (Mb) spectral features for minced meat classification. A total of 60 minced meat spectral cubes were pre-processed using true-color image formulation to extract regions of interest, which were further normalized using the Savitzky–Golay filtering technique. The proposed pipeline outperformed several state-of-the-art methods by achieving an average accuracy of 88.88%.



2019 ◽  
Vol 12 (1) ◽  
pp. 183-198 ◽  
Author(s):  
Ruchi Agarwal ◽  
C. S. Salimath ◽  
Khursheed Alam

Multiple image compression using wavelet based methods including Discrete Wavelet Transform (DWT) through sub band coding (SBC) and decoding are reviewed for their comparative study. True color image compression measuring parameters like compression ratio (CR), peak to signal noise ratio (PSNR), mean square error (MSE), bits per pixel (BPP) are computed using MATLAB code for each algorithm employed. Gray scale image like Magnetic Resonance Imaging (MRI) is chosen for wavelet transform to achieve encoding and decoding using multiple wavelet families and resolutions to examine their relative merits and demerits. Our main objective is to establish advantages of multiple compression techniques (compressions using multiresolution) helpful in transmitting bulk of compressed medical images via different gadgets facilitating early detection and diagnosis followed by treatments or referrals to specialists residing in different parts of the world. Contemporary compression techniques based on wavelet transform can serve as revolutionary idea in medical field for the overall benefit of humanity.



Author(s):  
Pankaj Pal ◽  
Siddhartha Bhattacharyya

In this chapter, the authors propose the true color image segmentation in real-life images as well as synthetic images by means of thresholded MUSIG function, which is learnt by quantum-formulated self-supervised neural network according to change of phase. In the initial phase, the true color image is segregated in the source module to fragment three different components—red, green, and blue colors—for three parallel layers of QMLSONN architecture. This information is fused in the sink module of QPSONN to get the preferred output. Each pixel of the input image is converted to the corresponding qubit neurons according to the phase manner. The interconnection weights between the layers are represented by qubit rotation gates. The quantum measurement at the output layer destroys the quantum states and gets the output for the processed information by means of quantum backpropagation algorithm using fuzziness measure.



Author(s):  
Sunanda Das ◽  
Sourav De ◽  
Siddhartha Bhattacharyya

In this chapter, a quantum-induced modified-genetic-algorithm-based FCM clustering approach is proposed for true color image segmentation. This approach brings down the early convergence problem of FCM to local minima point, increases efficacy of conventional genetic algorithm, and decreases the computational cost and execution time. Effectiveness of genetic algorithm is tumid by modifying some features in population initialization and crossover section. To speed up the execution time as well as make it cost effective and also to get more optimized class levels some quantum computing phenomena like qubit, superposition, entanglement, quantum rotation gate are induced to modified genetic algorithm. Class levels which are yield now fed to FCM as initial input class levels; thus, the ultimate segmented results are formed. Efficiency of proposed method are compared with classical modified-genetic-algorithm-based FCM and conventional FCM based on some standard statistical measures.



2015 ◽  
Vol 52 (5) ◽  
pp. 051003
Author(s):  
许辉熙 Xu Huixi ◽  
陈云浩 Chen Yunhao ◽  
薛万蓉 Xue Wanrong


Sign in / Sign up

Export Citation Format

Share Document