Optimum Tool Design in a Multi-stage Rectangular Cup Drawing and Ironing Process with the Large Aspect Ratio by the Finite Element Analysis

2002 ◽  
Vol 26 (6) ◽  
pp. 1077-1084 ◽  
2011 ◽  
Vol 295-297 ◽  
pp. 1564-1567
Author(s):  
Yong Hong ◽  
Seokjun Yu ◽  
Jaejung Lee ◽  
Hyeonsu Ha ◽  
Dong Pyo Hong

The multi-stage boom consisting of several booms is used in order to develop the aerial platform truck that can be used in a working radius that is higher and safe. Because the length increases compared with the width or the height of the structure, the intensity and rigidity are lowered along with the safety. Accordingly, a countermeasure is needed. Therefore, in this research, when designing of the high ground work difference Boom System, the safety the stress of the considered boom the analyze method and experimental method tries to be evaluated through the comparison. The finite-element analysis(FEA) compared the Strain value which is obtained through the resolution value and actual experiment by using the Ansys,that is the general purpose program, and proved this safety.


2018 ◽  
Vol 920 ◽  
pp. 114-119
Author(s):  
Hong Syuan Su ◽  
Fuh Kuo Chen ◽  
Kun Min Huang

With the ongoing development of product process, there is a growing demand on micro products. Though the macro-drawing process has been well-developed, the design concepts may not be directly applicable to the micro-drawing due to the size effect occurred in the micro-forming processes. In the present study, experiments were conducted first to establish the stress-strain curves, r-values and work hardening exponents of 304 stainless steel sheets with different grain sizes. The experiment results reveal that the stress-strain and r-value become smaller and the work hardening exponent increases for larger grain sizes. The difference between stress-strain curves in various directions of 0°, 45° and 90°, respectively, is significant when the grain size increases. The stamping of a vibration motor shell of cell phone, which bears a circular cylindrical shape, was also examined in the present study. The finite element simulations were performed to evaluate the formability of the multi-stage drawing process with initial die design. The forming characteristics were identified and an optimum die design was then developed with the use of the finite element analysis. The stamping process with multi-stage tooling design based on the finite element analysis was implemented and the actual stamping experiments were conducted to verify finite element analysis. The experimental results confirm the validity of the modified tooling design and the efficiency of the finite element analysis.


2011 ◽  
Vol 66-68 ◽  
pp. 76-81
Author(s):  
Gao Shan Ma ◽  
Han Ying Wang ◽  
Song Yang Zhang ◽  
Min Wan

The cylindrical cup drawing of 5A90 Aluminum-Lithium alloy sheets at various forming conditions was studied by both the experimental approach and the finite element analysis. The uniaxial tensile tests and forming limit tests of 5A90 Al-Li alloy sheets at various temperatures were first carried out. The tests results were then employed in the finite element simulations to investigate the effects of process parameters, such as forming temperature, holder force, and die corner radius, on the formability of cylindrical cup drawing with 5A90 sheets. In order to validate the finite element analysis, the corresponding deep drawing tests were also carried out. It is shown that the simulation results are in qualitative agreement with the experimental observations. The optimal forming temperature, diameter of blank, holder force, punch radius and die corner radius were then determined for the cylindrical cup drawing of 5A90 sheets, and the limit drawing ratio (LDR) reached 2.4 in the optimal parameter conditions.


1985 ◽  
Vol 13 (3) ◽  
pp. 127-146 ◽  
Author(s):  
R. Prabhakaran

Abstract The finite element method, which is a numerical discretization technique for obtaining approximate solutions to complex physical problems, is accepted in many industries as the primary tool for structural analysis. Computer graphics is an essential ingredient of the finite element analysis process. The use of interactive graphics techniques for analysis of tires is discussed in this presentation. The features and capabilities of the program used for pre- and post-processing for finite element analysis at GenCorp are included.


2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


Sign in / Sign up

Export Citation Format

Share Document