A Mixed-Integer Optimization Model for Compressor Selection in Natural Gas Pipeline Network System Operations

2004 ◽  
Vol 3 (1) ◽  
pp. 33-41 ◽  
Author(s):  
V. Uraikul
Author(s):  
Kaituo Jiao ◽  
Peng Wang ◽  
Yi Wang ◽  
Bo Yu ◽  
Bofeng Bai ◽  
...  

The development of natural gas pipeline network towards larger scale and throughput has urged better reliability of the pipeline network to satisfy transportation requirement. Previously, studies of optimizing natural gas pipeline network have been mainly focused on reducing operating cost, with little concern on the reliability of pipeline network. For a natural gas pipeline network with a variety of components and complicated topology, a multi-objective optimization model of both reliability and operating cost is proposed in this study. Failure of each component and the state of pipeline network under failure conditions are taken into account, and minimum cut set method is employed to calculate the reliability of the pipeline network. The variables to be determined for the optimization objectives are the rotating speed of compressors and the opening of valves. Then the solving procedure of the proposed model is presented based on Decoupled Implicit Method for Efficient Network Simulation (DIMENS) method and NS-saDE algorithm. The validity of the optimization model is ascertained by its application on a complicated pipeline network. The results illustrate that the optimization model can depict the relative relationship between reliability and operating cost for different throughput, by which the operation scheme with both satisfying reliability and operating cost can be obtained. In addition, the customer reliability and the impact of the failure of each pipeline on the whole network can be evaluated quantitatively to identify the consumers and pipelines of maintenance priority. The pipeline network reliability can be improved through proper monitoring and maintenance of these consumers and pipelines.


2004 ◽  
Vol 43 (4) ◽  
pp. 990-1002 ◽  
Author(s):  
Panote Nimmanonda ◽  
Varanon Uraikul ◽  
Christine W. Chan ◽  
Paitoon Tontiwachwuthikul

Author(s):  
Weichao Yu ◽  
Kai Wen ◽  
Yichen Li ◽  
Weihe Huang ◽  
Jing Gong

Natural gas pipeline network system is a critical infrastructure connecting gas resource and market, which is composed with the transmission pipeline system, underground gas storage (UGS) and liquefied natural gas (LNG) terminal demand. A methodology to assess the gas supply capacity and gas supply reliability of a natural gas pipeline network system is developed in this paper. Due to random failure and maintenance action of the components in the pipeline network system, the system can be in a number of operating states. The methodology is able to simulate the state transition process and the duration of each operating state based on a Monte Carlo approach. After the system transits to other states, the actual flow rate will change accordingly. The hydraulic analysis, which includes thermal-hydraulic simulation and maximum flow algorithm, is applied to analyze the change law of the actual flow rate. By combining the hydraulic analysis into the simulation of the state transition process, gas supply capacity of the pipeline network system is quantified. Furthermore, considering the uncertainty of market demand, the load duration curve (LDC) method is employed to predict the amount of demand for each consumer node. The gas supply reliability is then calculated by comparing the gas supply capacity with market demand. Finally, a detailed procedure for gas supply capacity and gas supply reliability assessment of a natural gas pipeline network system is presented, and its feasibility is confirmed with a case study. In the case study, the impact of market demand uncertainty on gas supply reliability is investigated in detail.


Sign in / Sign up

Export Citation Format

Share Document