scholarly journals Numerical Simulation of a Water Drop Sinking in Oil by Adaptive Mesh Refinement Front-Tracking Method

2007 ◽  
Vol 2 ◽  
pp. 165-171
Author(s):  
Yasufumi YAMAMOTO ◽  
Tomomasa UEMURA
2017 ◽  
Vol 2017 ◽  
pp. 1-8
Author(s):  
Ying Zhang ◽  
Min Lu ◽  
Wenqiang Shang ◽  
Zhen Xia ◽  
Liang Zeng ◽  
...  

Based on the front-tracking method (FTM), the movement of a single bubble that rose freely in a transverse ridged tube was simulated to analyze the influence of a contractive channel on the movement of bubbles. The influence of a symmetric contractive channel on the shape, speed, and trajectory of the bubbles was analyzed by contrasting the movement with bubbles in a noncontractive channel. As the research indicates, the bubbles became more flat when they move close to the contractive section of the channel, and the bubbles become less flat when passing through the contractive section. This effect becomes more obvious with an increase in the contractive degree of the channel. The symmetric contractive channel can make the bubbles first decelerate and later accelerate, and this effect is deeply affected by Reynolds number (Re) and Eötvös number (Eo).


2011 ◽  
Vol 18 (3) ◽  
pp. 032902 ◽  
Author(s):  
Frederic Effenberger ◽  
Kay Thust ◽  
Lukas Arnold ◽  
Rainer Grauer ◽  
Jürgen Dreher

2021 ◽  
Author(s):  
Sobhan Hatami ◽  
Stuart Walsh

In this paper, we consider two Adaptive Mesh Refinement (AMR) methods to simulate flow through fractures using a novel multiphase model. The approach represents the fluid using a two-dimensional parallel-plate model that employs techniques adapted from lattice-Boltzmann simulations to track the fluid interface. Here, we discuss different mesh refinement strategies for the model and compare their performance to that of a uniform grid. Results from the simulations are demonstrated showing excellent agreement between the model and analytical solutions for both unrefined and refined meshes. We also present results from the study that illustrate the behavior of the AMR front-tracking method. The AMR model is able to accurately track the interfacial properties in cases where uniform fine meshes would significantly increase the simulation cost.The ability of the model to dynamically refine the domain is demonstrated by presenting the results from an example with evolving interfaces.


2008 ◽  
Vol 227 (13) ◽  
pp. 6574-6590 ◽  
Author(s):  
S. Pancheshnyi ◽  
P. Ségur ◽  
J. Capeillère ◽  
A. Bourdon

2010 ◽  
Vol 24 (13) ◽  
pp. 1337-1340 ◽  
Author(s):  
CHENG WANG ◽  
TIANBAO MA

In this paper the two-dimensional Euler equations, with a simple chemical reaction model, are used as the governing equations for the detonation problem. The spatial derivatives are evaluated using the fifth-order WENO scheme, and the third-order TVD Runge-Kutta method is employed for the temporal derivative. The characteristics of the two-dimensional detonation in an argon-diluted mixture of hydrogen and oxygen are investigated using Adaptive Mesh Refinement (AMR) method. From computational accuracy point of view, AMR enables the detonation front to be clearer than the method with basic meshes. From the other point of computational time, AMR also saves about half the time as compared with the case of refining the entire field. It is obvious that AMR not only increases the resolution of local field, but also improves the efficiency of numerical simulation.


2019 ◽  
Author(s):  
Yunxing Zhang ◽  
Wenyang Duan ◽  
Kangping Liao ◽  
Shan Ma ◽  
Guihua Xia

Abstract The numerical simulation of wave breaking problem is still a tough challenge, partly due to the large grid number and CPU time requirement for capturing the multi-scale structures embedded in it. In this paper, a two-dimensional two-phase flow model with Adaptive Mesh Refinement (AMR) is proposed for simulating solitary wave breaking problems. Fractional step method is employed for the velocity-pressure decoupling. The free surface flow is captured with the Volume-of-Fluid (VOF) method combined with Piecewise Linear Interface Calculation (PLIC) for the reconstruction of the interface. Immersed boundary (IB) method is utilized to account for the existence of solid bodies. A geometric multigrid method is adopted for the solution of Pressure Poisson Equation (PPE). Benchmark case of advection test is considered first to test the VOF method. Then the solitary wave propagation problem is utilized to validate the model on AMR grid as well as analyze the efficiency of AMR. Furthermore, the solitary wave past a submerged stationary stage problem is simulated to validate the combined IB-VOF-AMR model. All the numerical results are compared with analytic solutions, experimental data or other published numerical results, and good agreements are obtained. Finally, the influence of stage height on the occurrence of wave breaking is analyzed. The locations of wave breaking are summarized for different stage heights.


Sign in / Sign up

Export Citation Format

Share Document