droplet formation
Recently Published Documents


TOTAL DOCUMENTS

1052
(FIVE YEARS 243)

H-INDEX

67
(FIVE YEARS 8)

Author(s):  
Siyoung Kim ◽  
Chenghan Li ◽  
Robert V. Farese ◽  
Tobias C. Walther ◽  
Gregory A. Voth

Author(s):  
Hui-Chung Cheng ◽  
Cheng-Han Li ◽  
Tien-Li Chang ◽  
Ping-Hei Chen

2022 ◽  
Vol 2161 (1) ◽  
pp. 012026
Author(s):  
Neha Thakur ◽  
Hari Murthy

Abstract Flow simulations of jetting of inkjet drops are presented for water and ethylene glycol. In the inkjet printing process, droplet jetting behaviour is the deciding parameter for print quality. The multiphase volume of fluid (VOF) method is used because the interaction between two phases (air and liquid) is involved in the drop formation process. The commercial inkjet printer has a nozzle diameter of ∼73.2μm. In this work, a simulation model of inkjet printer nozzles with different diameters 40μm, 60μm, and 80μm are developed using ANSYS FLUENT software. It is observed that when water is taken as solvent then the stable droplets are generated at 60μm nozzle diameter till 9μs because of its low viscosity. For higher diameter, the stamen formation is observed. Ethylene glycol stable droplets are achieved at 80μm nozzle diameter till 9μs because of their high viscosity (∼10 times that of water). Along with the droplet formation, the sustainability of the droplet in the air before reaching the substrate is also important. The simulation model is an inexpensive, fast, and flexible alternative to study the ink characteristics of the real-world system without wasting resources.


2021 ◽  
Author(s):  
Mohamad Ali Bijarchi ◽  
Mohammad Yaghoobi ◽  
Amirhossein Favakeh ◽  
Mohammad Behshad Shafii

Abstract The magnetic actuation of ferrofluid droplets offers an inspiring tool in widespread engineering and biological applications. In this study, the dynamics of ferrofluid droplet generation with a Drop-on-Demand feature under a non-uniform magnetic field is investigated by multiscale numerical modeling. Langevin equation is assumed for ferrofluid magnetic susceptibility due to the strong applied magnetic field. Large and small computational domains are considered. In the larger domain, the magnetic field is obtained by solving Maxwell equations. In the smaller domain, a coupling of continuity, Navier Stokes, two-phase flow, and Maxwell equations are solved by utilizing the magnetic field achieved by the larger domain for the boundary condition. The Finite volume method and coupling of level-set and Volume of Fluid methods are used for solving equations. The droplet formation is simulated in a two-dimensional axisymmetric domain. The method of solving fluid and magnetic equations is validated using a benchmark. Then, ferrofluid droplet formation is investigated experimentally and the numerical results are in good agreement with the experimental data. The effect of 12 dimensionless parameters including the ratio of magnetic, gravitational, and surface tension forces, the ratio of the nozzle and magnetic coil dimensions, and ferrofluid to continuous-phase properties ratios are studied. The results showed that by increasing the magnetic Bond number, gravitational Bond number, Ohnesorge number, dimensionless saturation magnetization, initial magnetic susceptibility of ferrofluid, the generated droplet diameter reduces, whereas the formation frequency increases. The same results were observed when decreasing the ferrite core diameter to outer nozzle diameter, density, and viscosity ratios.


2021 ◽  
Author(s):  
Huy M. Dao ◽  
Sawittree Sahakijpijarn ◽  
Robert R. Chrostowski ◽  
Chaeho Moon ◽  
Filippo Mangolini ◽  
...  

ABSTRACTBiological macromolecules, especially therapeutic proteins, are delicate and highly sensitive to degradation from stresses encountered during the manufacture of dosage forms. Thin-film freeze-drying (TFFD) and spray freeze-drying (SFD) are two processes used to convert liquid forms of protein into dry powders. In the production of inhalable dry powders that contain proteins, these potential stressors fall into three categories based on their occurrence during the primary steps of the process: (1) droplet formation (e.g., the mechanism of droplet formation, including spray atomization), (2) freezing, and (3) frozen water removal (e.g., sublimation). This study compares the droplet formation mechanism used in TFFD and SFD by investigating the effects of spraying on the stability of proteins, using lactoferrin as a model. This study considers various perspectives on the degradation (e.g., conformation) of lactoferrin after subjecting the protein solution to the atomization process using a pneumatic two-fluid nozzle (employed in SFD) or a low-shear drop application through the nozzle. The surface activity of lactoferrin was examined to explore the interfacial adsorption tendency, diffusion, and denaturation process. Subsequently, this study also investigates the secondary and tertiary structure of lactoferrin, the quantification of monomers, oligomers, and ultimately, aggregates. The spraying process affected the tertiary structure more negatively than the tightly woven secondary structure, resulting in a 1.5 nm red shift in peak position corresponding to the Tryptophan (Trp) residues. This conformational change can either (a) be reversed at low concentrations via relaxation or (b) proceed to form irreversible aggregates at higher concentrations. Interestingly, when the sample was allowed to progress into micron-sized aggregates, such a dramatic change was not detected using methods such as size-exclusion chromatography, polyacrylamide gel electrophoresis, and dynamic light scattering at 173°. A more complete understanding of the heterogeneous protein sample was achieved only through a combination of 173° and 13° backward and forward scattering, a combination of derived count rate measurements, and micro-flow imaging (MFI). Finally, compared to the low-shear dripping used in the TFFD process, lactoferrin underwent a relatively fast conformational change upon exposure to the high air-water interface of the two-fluid atomization nozzle used in the SFD process as compared to the low shear dripping used in the TFFD process. The interfacial induced denaturation that occurred during spraying was governed primarily by the size of the atomized droplets, regardless of the duration of exposure to air.


Author(s):  
Evelina Valionyte ◽  
Yi Yang ◽  
Sophie A. Griffiths ◽  
Amelia T. Bone ◽  
Elizabeth R. Barrow ◽  
...  

AbstractSQSTM1/p62, as a major autophagy receptor, forms droplets that are critical for cargo recognition, nucleation, and clearance. p62 droplets also function as liquid assembly platforms to allow the formation of autophagosomes at their surfaces. It is unknown how p62-droplet formation is regulated under physiological or pathological conditions. Here, we report that p62-droplet formation is selectively blocked by inflammatory toxicity, which induces cleavage of p62 by caspase-6 at a novel cleavage site D256, a conserved site across human, mouse, rat, and zebrafish. The N-terminal cleavage product is relatively stable, whereas the C-terminal product appears undetectable. Using a variety of cellular models, we show that the p62 N-terminal caspase-6 cleavage product (p62-N) plays a dominant-negative role to block p62-droplet formation. In vitro p62 phase separation assays confirm this observation. Dominant-negative regulation of p62-droplet formation by caspase-6 cleavage attenuates p62 droplets dependent autophagosome formation. Our study suggests a novel pathway to modulate autophagy through the caspase-6–p62 axis under certain stress stimuli.


2021 ◽  
Vol 21 (23) ◽  
pp. 17513-17528
Author(s):  
Ramon Campos Braga ◽  
Barbara Ervens ◽  
Daniel Rosenfeld ◽  
Meinrat O. Andreae ◽  
Jan-David Förster ◽  
...  

Abstract. Aerosol–cloud interactions contribute to the large uncertainties in current estimates of climate forcing. We investigated the effect of aerosol particles on cloud droplet formation by model calculations and aircraft measurements over the Amazon and over the western tropical Atlantic during the ACRIDICON–CHUVA campaign in September 2014. On the HALO (High Altitude Long Range Research) research aircraft, cloud droplet number concentrations (Nd) were measured near the base of clean and polluted growing convective cumuli using a cloud combination probe (CCP) and a cloud and aerosol spectrometer (CAS-DPOL). An adiabatic parcel model was used to perform cloud droplet number closure studies for flights in differently polluted air masses. Model input parameters included aerosol size distributions measured with an ultra-high sensitive aerosol spectrometer (UHSAS), in combination with a condensation particle counter (CPC). Updraft velocities (w) were measured with a boom-mounted Rosemount probe. Over the continent, the aerosol size distributions were dominated by accumulation mode particles, and good agreement between measured and modeled Nd values was obtained (deviations ≲ 10 %) assuming an average hygroscopicity of κ∼0.1, which is consistent with Amazonian biomass burning and secondary organic aerosol. Above the ocean, fair agreement was obtained assuming an average hygroscopicity of κ∼0.2 (deviations ≲ 16 %) and further improvement was achieved assuming different hygroscopicities for Aitken and accumulation mode particles (κAit=0.8, κacc=0.2; deviations ≲ 10 %), which may reflect secondary marine sulfate particles. Our results indicate that Aitken mode particles and their hygroscopicity can be important for droplet formation at low pollution levels and high updraft velocities in tropical convective clouds.


Sign in / Sign up

Export Citation Format

Share Document