scholarly journals A Lightweight and Privacy-Preserving Answer Collection Scheme for Mobile Crowdsourcing

IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 5678-5687 ◽  
Author(s):  
Zhongyang Chi ◽  
Yingjie Wang ◽  
Yan Huang ◽  
Xiangrong Tong

2016 ◽  
Vol 101 ◽  
pp. 29-41 ◽  
Author(s):  
Bo Zhang ◽  
Chi Harold Liu ◽  
Jianyu Lu ◽  
Zheng Song ◽  
Ziyu Ren ◽  
...  

Author(s):  
Arwa Bashanfar ◽  
Eman Al-Zahrani ◽  
Maram Alutebei ◽  
Wejdan Aljagthami ◽  
Suhari Alshehri

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2474
Author(s):  
Guoying Qiu ◽  
Yulong Shen ◽  
Ke Cheng ◽  
Lingtong Liu ◽  
Shuiguang Zeng

The increasing popularity of smartphones and location-based service (LBS) has brought us a new experience of mobile crowdsourcing marked by the characteristics of network-interconnection and information-sharing. However, these mobile crowdsourcing applications suffer from various inferential attacks based on mobile behavioral factors, such as location semantic, spatiotemporal correlation, etc. Unfortunately, most of the existing techniques protect the participant’s location-privacy according to actual trajectories. Once the protection fails, data leakage will directly threaten the participant’s location-related private information. It open the issue of participating in mobile crowdsourcing service without actual locations. In this paper, we propose a mobility-aware trajectory-prediction solution, TMarkov, for achieving privacy-preserving mobile crowdsourcing. Specifically, we introduce a time-partitioning concept into the Markov model to overcome its traditional limitations. A new transfer model is constructed to record the mobile user’s time-varying behavioral patterns. Then, an unbiased estimation is conducted according to Gibbs Sampling method, because of the data incompleteness. Finally, we have the TMarkov model which characterizes the participant’s dynamic mobile behaviors. With TMarkov in place, a mobility-aware spatiotemporal trajectory is predicted for the mobile user to participate in the crowdsourcing application. Extensive experiments with real-world dataset demonstrate that TMarkov well balances the trade-off between privacy preservation and data usability.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Juan Zhang ◽  
Changsheng Wan ◽  
Chunyu Zhang ◽  
Xiaojun Guo ◽  
Yongyong Chen

To determine whether images on the crowdsourcing server meet the mobile user’s requirement, an auditing protocol is desired to check these images. However, before paying for images, the mobile user typically cannot download them for checking. Moreover, since mobiles are usually low-power devices and the crowdsourcing server has to handle a large number of mobile users, the auditing protocol should be lightweight. To address the above security and efficiency issues, we propose a novel noninteractive lightweight privacy-preserving auditing protocol on images in mobile crowdsourcing networks, called NLPAS. Since NLPAS allows the mobile user to check images on the crowdsourcing server without downloading them, the newly designed protocol can provide privacy protection for these images. At the same time, NLPAS uses the binary convolutional neural network for extracting features from images and designs a novel privacy-preserving Hamming distance computation algorithm for determining whether these images on the crowdsourcing server meet the mobile user’s requirement. Since these two techniques are both lightweight, NLPAS can audit images on the crowdsourcing server in a privacy-preserving manner while still enjoying high efficiency. Experimental results show that NLPAS is feasible for real-world applications.


2017 ◽  
Vol 4 (2) ◽  
pp. 572-582 ◽  
Author(s):  
Gaoqiang Zhuo ◽  
Qi Jia ◽  
Linke Guo ◽  
Ming Li ◽  
Pan Li

Sign in / Sign up

Export Citation Format

Share Document