scholarly journals With Wronskian through the Looking Glass

Author(s):  
Vassily Gorbounov ◽  
◽  
Vadim Schechtman ◽  

In the work of Mukhin and Varchenko from 2002 there was introduced a Wronskian map from the variety of full flags in a finite dimensional vector space into a product of projective spaces. We establish a precise relationship between this map and the Plücker map. This allows us to recover the result of Varchenko and Wright saying that the polynomials appearing in the image of the Wronsky map are the initial values of the tau-functions for the Kadomtsev-Petviashvili hierarchy.

1982 ◽  
Vol 25 (2) ◽  
pp. 133-139 ◽  
Author(s):  
R. J. H. Dawlings

IfMis a mathematical system and EndMis the set of singular endomorphisms ofM, then EndMforms a semigroup under composition of mappings. A number of papers have been written to determine the subsemigroupSMof EndMgenerated by the idempotentsEMof EndMfor different systemsM. The first of these was by J. M. Howie [4]; here the case ofMbeing an unstructured setXwas considered. Howie showed that ifXis finite, then EndX=Sx.


1961 ◽  
Vol 4 (3) ◽  
pp. 261-264
Author(s):  
Jonathan Wild

Let E be a finite dimensional vector space over an arbitrary field. In E a bilinear form is given. It associates with every sub s pa ce V its right orthogonal sub space V* and its left orthogonal subspace *V. In general we cannot expect that dim V* = dim *V. However this relation will hold in some interesting special cases.


1982 ◽  
Vol 86 ◽  
pp. 229-248 ◽  
Author(s):  
Haruhisa Nakajima

Let k be a field of characteristic p and G a finite subgroup of GL(V) where V is a finite dimensional vector space over k. Then G acts naturally on the symmetric algebra k[V] of V. We denote by k[V]G the subring of k[V] consisting of all invariant polynomials under this action of G. The following theorem is well known.Theorem 1.1 (Chevalley-Serre, cf. [1, 2, 3]). Assume that p = 0 or (|G|, p) = 1. Then k[V]G is a polynomial ring if and only if G is generated by pseudo-reflections in GL(V).


1985 ◽  
Vol 28 (3) ◽  
pp. 319-331 ◽  
Author(s):  
M. A. Reynolds ◽  
R. P. Sullivan

Let X be a set and the semigroup (under composition) of all total transformations from X into itself. In ([6], Theorem 3) Howie characterised those elements of that can be written as a product of idempotents in different from the identity. We gather from review articles that his work was later extended by Evseev and Podran [3, 4] (and independently for finite X by Sullivan [15]) to the semigroup of all partial transformations of X into itself. Howie's result was generalized in a different direction by Kim [8], and it has also been considered in both a topological and a totally ordered setting (see [11] and [14] for brief summaries of this latter work). In addition, Magill [10] investigated the corresponding idea for endomorphisms of a Boolean ring, while J. A. Erdos [2] resolved the analogous problem for linear transformations of a finite–dimensional vector space.


1985 ◽  
Vol 98 ◽  
pp. 139-156 ◽  
Author(s):  
Yasuo Teranishi

Let G be a connected linear algebraic group, p a rational representation of G on a finite-dimensional vector space V, all defined over C.


Sign in / Sign up

Export Citation Format

Share Document