scholarly journals An Efficient Implementation of Re-Sampling Technique for High Performance Multiple Classifier Systems

2007 ◽  
Vol 3 (4) ◽  
pp. 195-198
Author(s):  
S. Sathiyabam ◽  
K. Thyagaraja ◽  
D. Ayyamuthuk
2019 ◽  
Vol 11 (1) ◽  
Author(s):  
David Ruano-Ordás ◽  
Lindsey Burggraaff ◽  
Rongfang Liu ◽  
Cas van der Horst ◽  
Laura H. Heitman ◽  
...  

Abstract Drugs have become an essential part of our lives due to their ability to improve people’s health and quality of life. However, for many diseases, approved drugs are not yet available or existing drugs have undesirable side effects, making the pharmaceutical industry strive to discover new drugs and active compounds. The development of drugs is an expensive process, which typically starts with the detection of candidate molecules (screening) after a protein target has been identified. To this end, the use of high-performance screening techniques has become a critical issue in order to palliate the high costs. Therefore, the popularity of computer-based screening (often called virtual screening or in silico screening) has rapidly increased during the last decade. A wide variety of Machine Learning (ML) techniques has been used in conjunction with chemical structure and physicochemical properties for screening purposes including (i) simple classifiers, (ii) ensemble methods, and more recently (iii) Multiple Classifier Systems (MCS). Here, we apply an MCS for virtual screening (D2-MCS) using circular fingerprints. We applied our technique to a dataset of cannabinoid CB2 ligands obtained from the ChEMBL database. The HTS collection of Enamine (1,834,362 compounds), was virtually screened to identify 48,232 potential active molecules using D2-MCS. Identified molecules were ranked to select 21 promising novel compounds for in vitro evaluation. Experimental validation confirmed six highly active hits (> 50% displacement at 10 µM and subsequent Ki determination) and an additional five medium active hits (> 25% displacement at 10 µM). Hence, D2-MCS provided a hit rate of 29% for highly active compounds and an overall hit rate of 52%.


Author(s):  
SIMON GÜNTER ◽  
HORST BUNKE

Handwritten text recognition is one of the most difficult problems in the field of pattern recognition. In this paper, we describe our efforts towards improving the performance of state-of-the-art handwriting recognition systems through the use of classifier ensembles. There are many examples of classification problems in the literature where multiple classifier systems increase the performance over single classifiers. Normally one of the two following approaches is used to create a multiple classifier system. (1) Several classifiers are developed completely independent of each other and combined in a last step. (2) Several classifiers are created out of one prototype classifier by using so-called classifier ensemble creation methods. In this paper an algorithm which combines both approaches is introduced and it is used to increase the recognition rate of a hidden Markov model (HMM) based handwritten word recognizer.


Author(s):  
ROMAN BERTOLAMI ◽  
HORST BUNKE

Current multiple classifier systems for unconstrained handwritten text recognition do not provide a straightforward way to utilize language model information. In this paper, we describe a generic method to integrate a statistical n-gram language model into the combination of multiple offline handwritten text line recognizers. The proposed method first builds a word transition network and then rescores this network with an n-gram language model. Experimental evaluation conducted on a large dataset of offline handwritten text lines shows that the proposed approach improves the recognition accuracy over a reference system as well as over the original combination method that does not include a language model.


Author(s):  
Mario Barbareschi ◽  
Salvatore Del Prete ◽  
Francesco Gargiulo ◽  
Antonino Mazzeo ◽  
Carlo Sansone

Sign in / Sign up

Export Citation Format

Share Document