scholarly journals PARALLEL EXTRAGRADIENT-PROXIMAL METHODS FOR SPLIT EQUILIBRIUM PROBLEMS

2016 ◽  
Vol 21 (4) ◽  
pp. 478-501 ◽  
Author(s):  
Dang Van Hieu

In this paper, we introduce two parallel extragradient-proximal methods for solving split equilibrium problems. The algorithms combine the extragradient method, the proximal method and the shrinking projection method. The weak and strong convergence theorems for iterative sequences generated by the algorithms are established under widely used assumptions for equilibrium bifunctions. We also present an application to split variational inequality problems and a numerical example to illustrate the convergence of the proposed algorithms.

Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3292 ◽  
Author(s):  
Habib ur Rehman ◽  
Poom Kumam ◽  
Meshal Shutaywi ◽  
Nasser Aedh Alreshidi ◽  
Wiyada Kumam

This manuscript aims to incorporate an inertial scheme with Popov’s subgradient extragradient method to solve equilibrium problems that involve two different classes of bifunction. The novelty of our paper is that methods can also be used to solve problems in many fields, such as economics, mathematical finance, image reconstruction, transport, elasticity, networking, and optimization. We have established a weak convergence result based on the assumption of the pseudomonotone property and a certain Lipschitz-type cost bifunctional condition. The stepsize, in this case, depends upon on the Lipschitz-type constants and the extrapolation factor. The bifunction is strongly pseudomonotone in the second method, but stepsize does not depend on the strongly pseudomonotone and Lipschitz-type constants. In contrast, the first convergence result, we set up strong convergence with the use of a variable stepsize sequence, which is decreasing and non-summable. As the application, the variational inequality problems that involve pseudomonotone and strongly pseudomonotone operator are considered. Finally, two well-known Nash–Cournot equilibrium models for the numerical experiment are reviewed to examine our convergence results and show the competitive advantage of our suggested methods.


Author(s):  
Lateef Olakunle Jolaoso ◽  
Yekini Shehu ◽  
Regina N. Nwokoye

Abstract The subgradient extragradient method with inertial extrapolation step x n + θ n (x n − x n−1) (also known as inertial subgradient extragradient method) has been studied extensively in the literature for solving variational inequalities and equilibrium problems. Most of the inertial subgradient extragradient methods in the literature for both variational inequalities and equilibrium problems have not considered the special case when the inertial factor θ n = 1. The convergence results have always been obtained when the inertial factor θ n is assumed 0 ≤ θ n < 1. This paper considers the relaxed inertial version of subgradient extragradient method for equilibrium problems with 0 ≤ θ n ≤ 1. We give both weak and strong convergence results using this inertial subgradient extragradient method and also give some numerical illustrations.


Author(s):  
Zhongbing Xie ◽  
Gang Cai ◽  
Xiaoxiao Li ◽  
Qiao-Li Dong

Abstract The purpose of this paper is to study a new Tseng’s extragradient method with two different stepsize rules for solving pseudomonotone variational inequalities in real Hilbert spaces. We prove a strong convergence theorem of the proposed algorithm under some suitable conditions imposed on the parameters. Moreover, we also give some numerical experiments to demonstrate the performance of our algorithm.


Sign in / Sign up

Export Citation Format

Share Document