scholarly journals IMPLEMENTATION OF CLOSE RANGE PHOTOGRAMMETRY USING MODERN NON-METRIC DIGITAL CAMERAS FOR ARCHITECTURAL DOCUMENTATION

2021 ◽  
Vol 47 (1) ◽  
pp. 45-53
Author(s):  
Mariem A. Elhalawani ◽  
Zaki M. Zeidan ◽  
Ashraf A. A. Beshr

The development of applied geodetic techniques for mapping and documentation of historical structures, buildings and sites is an important and vital purpose for contribution of any recording of cultural heritage for any country such as Egypt. This is done to preserve and restore any valuable architectural or other cultural monument, as a support to architectural, archaeological and other art-historical research throughout the ages. The purpose of this paper is to use close range photogrammetry technique (CRP) to reconstruct 3D model of architectural and historical mosque facade and comparing the accuracy of using digital commercial non-metric cameras with different resolutions and metric camera with flatbed scanner and photogrammetric scanner for architectural building documentation. El-Nasr Mosque façade in Mansoura city, Egypt was chosen as a case study in this paper. At first, twenty five points were selected at mosque façade at different elevations and distributed at different façade surfaces and observed using total station. Some of these points were selected as control points and the others were selected as check points to validate the results. Effect of control point’s number on image processing and analysis is also studied. Three cameras positions were selected for imaging to get the full details of mosque façade. Close range Digital Workstation (CDW) program was used for processing and analysis of multiple images. The results are indicated that close range photogrammetry using metric camera with photogrammetry scanner instead of flatbed scanner in technique is accurate enough to be beneficial in 3D architectural building documentation. Digital cameras with CRP technique give up different accuracy that depends mainly on the resolution of cameras and camera specifications.

2018 ◽  
Vol 63 ◽  
pp. 00013
Author(s):  
Tadeusz Widerski ◽  
Karol Daliga

The article presents a comparison of obtained models of a test object. Close range photogrammetry was used to obtain 3D models. As test object was used one of the rooms located in Wisłoujście Fortress in Gdańsk, Poland. Different models were obtained by using different distribution and number of reference points. Article contains analysis of differences between coordinates of control points obtained from total station measurements and estimated from different 3D models.


2021 ◽  
Vol 318 ◽  
pp. 04005
Author(s):  
Tariq N. Ataiwe ◽  
Israa Hatem ◽  
Hisham M. J. Al Sharaa

Smartphones recently expanded the potential for low-cost close-range photogrammetry for 3D modeling. They enable the simultaneous collection of large amounts of data for a variety of requirements. It is possible to calculate image orientation elements and triangular coordinates in phases as in Relative and Absolute image orientation. This study demonstrates the photogrammetric 3D reconstruction approach that performs on tablets and smartphones as well. Images are taken with smartphone cameras of iPhone 6 and then calibrated automatically using normal calibration model for photogrammetry and computer vision on a PC, depend on Agisoft Lens add-on that imbedded in Agisoft program, and MATLAB camera calibration Toolbox, and by using an oriented bunch of images of chessboard pattern for large point cloud-based picture using matching. The camera calibration results indicate that the calibration processing routines pass without any error, and the accuracy of estimated IOPs was convenient compared with non-metric digital cameras and are more accurate in Agisoft Lens in terms of standard error. For the 3D model, 435 cameras were used, 428 cameras located from 435 are aligned in two photogrammetric software, Agisoft PhotoScan, and LPS. The number of tie points that are used in LPS is 10 tie points, and 4 control points which used to estimate the EOPs, and the number of tie points that are regenerated in Agisoft PhotoScan were 135.605 points, the number of Dense cloud 3,716,912 points are generated, for 3D model a number of 316,253 faces are generated, after processing the tiled model generated (6 levels, 1.25 cm/pix), the generated DEM having (2136×1774/pix), the dimensions of the generated high-resolution orthomosaic are (5520×4494, 4.47 cm/pix). For accuracy assessment, the Xerr. = 0.292 m, Yerr. = 0.38577 m, Zerr.= 0.2889 m, and the total RMS = 0.563 m in the estimated locations of the exterior orientation parameters.


2017 ◽  
Vol 43 (2) ◽  
pp. 66-72 ◽  
Author(s):  
Khalid L. A. EL-ASHMAWY

The present work tests the suitability of using the digital cameras of smart phones for close range photogrammetry applications. For this purpose two cameras of smart phones Lumia 535 and Lumia 950 XL were used. The resolutions of the two cameras are 5 and 20 Mpixels respectively. The tests consist of (a) self calibration of the two cameras, (b) the implementation of close-range photogrammetry using the cameras of the two smart phones, theodolite intersection with LST method, and linear variable displacement transducers (LVDTs) for the measurement of vertical deflections, and (c) accuracy of photogrammetric determination of object space coordinates. The results of using Lumia 950 XL are much better than using Lumia 535 and are better or comparable to the results of theodolite intersection with least squares technique (LST). Finally, it can be stated that the digital cameras of smart phones are suitable for close range photogrammetry applications according to accuracy, costs and flexibility.


Author(s):  
E. Nocerino ◽  
F. Menna ◽  
F. Remondino ◽  
J.-A. Beraldin ◽  
L. Cournoyer ◽  
...  

One of the strongest limiting factors in close range photogrammetry (CRP) is the depth of field (DOF), especially at very small object distance. When using standard digital cameras and lens, for a specific camera – lens combination, the only way to control the extent of the zone of sharp focus in object space is to reduce the aperture of the lens. However, this strategy is often not sufficient; moreover, in many cases it is not fully advisable. In fact, when the aperture is closed down, images lose sharpness because of diffraction. Furthermore, the exposure time must be lowered (susceptibility to vibrations) and the ISO increased (electronic noise may increase). In order to adapt the shape of the DOF to the subject of interest, the Scheimpflug rule is to be applied, requiring that the optical axis must be no longer perpendicular to the image plane. Nowadays, specific lenses exist that allow inclining the optical axis to modify the DOF: they are called tilt-shift lenses. In this paper, an investigation on the applicability of the classic photogrammetric model (pinhole camera coupled with Brown’s distortion model) to these lenses is presented. Tests were carried out in an environmentally controlled metrology laboratory at the National Research Council (NRC) Canada and the results are hereafter described in detail.


Author(s):  
C. Stanga ◽  
C. Spinelli ◽  
R. Brumana ◽  
D. Oreni ◽  
R. Valente ◽  
...  

This essay describes the combination of 3D solutions and software techniques with traditional studies and researches in order to achieve an integrated digital documentation between performed surveys, collected data, and historical research. The approach of this study is based on the comparison of survey data with historical research, and interpretations deduced from a data cross-check between the two mentioned sources. The case study is the Basilica of S. Ambrogio in Milan, one of the greatest monuments in the city, a pillar of the Christianity and of the History of Architecture. It is characterized by a complex stratification of phases of restoration and transformation. Rediscovering the great richness of the traditional architectural notebook, which collected surveys and data, this research aims to realize a virtual notebook, based on a 3D model that supports the dissemination of the collected information. It can potentially be understandable and accessible by anyone through the development of a mobile app. The 3D model was used to explore the different historical phases, starting from the recent layers to the oldest ones, through a virtual subtraction process, following the methods of Archaeology of Architecture. Its components can be imported into parametric software and recognized both in their morphological and typological aspects. It is based on the concept of LoD and ReverseLoD in order to fit the accuracy required by each step of the research.


2020 ◽  
Vol 6 (3) ◽  
pp. 446-458
Author(s):  
Marwa Mohammed Bori ◽  
Zahraa Ezzulddin Hussein

As known Close range photogrammetry represents one of the most techniques to create precise 3D model. Metric camera, digital camera, and Laser scanning can be exploited for the photogrammetry with variety level of cost that may be high. In this study, the cost level is taken in to consideration to achieve balance between the cost and the obtained accuracy. This study aims to detect potential of low cost tools for creating 3D model in terms of obtained accuracy and details and comparing it with corresponding studies. Smart phone camera is the most available for everyone; this gave the motivation for use in this study. In addition, Google Earth was used to integrate the 3D model produced from all sides including the roof.  Then, two different types of the mobile camera were used in addition to the DSLR camera (Digital Single Lens Reflex) for comparison and analysis purposes. Thus, this research gave flexibility in work and low cost resulting from replacement the metric camera with the smart camera and the unmanned aerial vehicle (UAV) with Google Earth data. Mechanism of the work can be summarized in four steps. Firstly, photogrammetry planning to determine suitable baselines from object and location of targets that measured using GPS and Total station devices. Secondly, collect images using close range photogrammetry technique. Thirdly, processing step to create the 3D model and integrated with Google Earth images using the Agi Photoscan software. Finally, Comparative and evaluation stage to derive the accuracy and quality of the model obtained from this study using statistical analysis method. Regarding this Study, University of Baghdad, central library was selected as the case study. The results of this paper show that the low cost 3D model resulted from integrating  phone and Google Earth images gave suitable result with mean accuracy level reached to about less than 5 meters compared with DSLR camera result, this may be used for several applications such as  culture heritage and architecture documentation.


2018 ◽  
Vol 162 ◽  
pp. 03027
Author(s):  
Abbas Khalaf ◽  
Tariq Ataiwe ◽  
Israa Mohammed ◽  
Ali Kareem

This research is to evaluate the feasibility of applying three-dimensional modelling of the close-range photogrammetry in documenting archaeological monuments by using digital photogrammetry image processing software and digital consumer camera. The digital camera used was Nikon D3100, the processing software was (AgiSoft PhotoScan) and (ArcGIS, ArcScene extension). The study area was selected in the centre of Baghdad province by choosing one of the archeological monuments in it, namely the Abbasid alace. A set of camera locations represent the locations of the images, and as a result of the processing, 81 digital images were arranged in a sequence in which the results of this step were verified. The points cloud after processing were 1,082,617 points. Six control points were selected, used as distances constrained. The validity of the fixed location of the points can be ascertained by checking the data. The program provide the error and accuracy for each image, where a total error in the scale bar was 0.005253 meters, a total error of marks points was 0.010957 meters and the accuracy for all six points was 0.005 meters.


Sign in / Sign up

Export Citation Format

Share Document