scholarly journals REVERBERATION MAPPING OF THE BROAD-LINE REGION IN NGC 5548: EVIDENCE FOR RADIATION PRESSURE?

2016 ◽  
Vol 827 (2) ◽  
pp. 118 ◽  
Author(s):  
Kai-Xing Lu ◽  
Pu Du ◽  
Chen Hu ◽  
Yan-Rong Li ◽  
Zhi-Xiang Zhang ◽  
...  
Author(s):  
C Martin Gaskell ◽  
Kayla Bartel ◽  
Julia N Deffner ◽  
Iris Xia

Abstract In the standard AGN reverberation-mapping model, variations in broad-line region (BLR) fluxes are predicted from optical continuum variability (taken as a proxy for the ionizing continuum) convolved with a response function that depends on the geometry. However, it has long been known that BLR variability can deviate from these predictions. We analyse both extensive long-term Hβ and continuum monitoring of NGC 5548 and a large sample of high-quality Hβ light curves of other AGNs to investigate the frequency and characteristics of anomalous responses of the BLR. We find that anomalies are very common and probably occur in every object. Onsets can be on a timescale only slightly longer than the light-crossing time and durations are of the order of the characteristic timescale of variability of the optical continuum to several times longer. Anomalies are larger when NGC 5548 is in a low state, but otherwise there is no correlation with continuum variability. There is abundant evidence for the optical continuum of AGNs varying independently of the higher-energy continua and this is sufficient to explain the anomalous responses of the total BLR flux. There are good reasons for believing that the frequent lack of correlation between spectral regions is due to anisotropic and non-axisymmetric emission. Rapid changes in line profiles and velocity-dependent lags are consistent with this. Motion of compact absorbing clouds across the line of sight is another possible cause of anomalies. The prevalence of anomalies should be considered when planning reverberation-mapping campaigns.


2020 ◽  
Vol 902 (1) ◽  
pp. 74
Author(s):  
P. R. Williams ◽  
A. Pancoast ◽  
T. Treu ◽  
B. J. Brewer ◽  
B. M. Peterson ◽  
...  

1997 ◽  
Vol 159 ◽  
pp. 138-145
Author(s):  
D. Maoz

AbstractI review what we have learned about the BLR from reverberation mapping, point to some problems and complications that have emerged, and outline some future directions.


2018 ◽  
Vol 14 (S342) ◽  
pp. 270-271
Author(s):  
C. Alenka Negrete ◽  
Deborah Dultzin ◽  
Paola Marziani ◽  
Jack W. Sulentic ◽  
M. L. Martínez-Aldama

AbstractWe present a method that uses photoionization codes (CLOUDY) to estimate the supermassive black hole masses (MBH) for quasars at low and high redshift. This method is based on the determination of the physical conditions of the broad line region (BLR) using observational diagnostic diagrams from line ratios in the UV. We also considered that the density and metallicity of the BLR in quasars at high z could be different from those at the nearby Universe. The computed black hole masses obtained using this method are in agreement with those derived from the method of reverberation mapping.


Sign in / Sign up

Export Citation Format

Share Document