seyfert galaxy
Recently Published Documents


TOTAL DOCUMENTS

655
(FIVE YEARS 43)

H-INDEX

48
(FIVE YEARS 4)

2021 ◽  
Vol 922 (2) ◽  
pp. 254
Author(s):  
Gerald Cecil ◽  
Alexander Y. Wagner ◽  
Joss Bland-Hawthorn ◽  
Geoffrey V. Bicknell ◽  
Dipanjan Mukherjee

Abstract MeerKAT radio continuum and XMM-Newton X-ray images have recently revealed a spectacular bipolar channel at the Galactic Center that spans several degrees (∼0.5 kpc). An intermittent jet likely formed this channel and is consistent with earlier evidence of a sustained, Seyfert-level outburst fueled by black hole accretion onto Sgr A* several Myr ago. Therefore, to trace a now weak jet that perhaps penetrated, deflected, and percolated along multiple paths through the interstellar medium, relevant interactions are identified and quantified in archival X-ray images, Hubble Space Telescope Paschen α images and Atacama Large Millimeter/submillimeter Array millimeter-wave spectra, and new SOAR telescope IR spectra. Hydrodynamical simulations are used to show how a nuclear jet can explain these structures and inflate the ROSAT/eROSITA X-ray and Fermi γ-ray bubbles that extend ± 75° from the Galactic plane. Thus, our Galactic outflow has features in common with energetic, jet-driven structures in the prototypical Seyfert galaxy NGC 1068.


2021 ◽  
Vol 922 (1) ◽  
pp. 45
Author(s):  
Ali Kheirandish ◽  
Kohta Murase ◽  
Shigeo S. Kimura

Abstract Particles may be accelerated in magnetized coronae via magnetic reconnections and/or plasma turbulence, leading to high-energy neutrinos and soft γ-rays. We evaluate the detectability of neutrinos from nearby bright Seyfert galaxies identified by X-ray measurements. In the disk-corona model, we find that NGC 1068 is the most promising Seyfert galaxy in the Northern sky, where IceCube is the most sensitive, and show prospects for the identification of aggregated neutrino signals from Seyfert galaxies bright in X-rays. Moreover, we demonstrate that nearby Seyfert galaxies are promising targets for the next generation of neutrino telescopes such as KM3NeT and IceCube-Gen2. For KM3NeT, Cen A can be the most promising source in the Southern sky if a significant fraction of the observed X-rays come from the corona, and it could be identified in few years of KM3NeT operation. Our results reinforce the idea that hidden cores of supermassive black holes are the dominant sources of the high-energy neutrino emission and underlines the necessity of better sensitivity to medium-energy ranges in future neutrino detectors for identifying the origin of high-energy cosmic neutrinos.


Author(s):  
Anne Inkenhaag ◽  
Peter G Jonker ◽  
Giacomo Cannizzaro ◽  
Daniel Mata Sánchez ◽  
Richard D Saxton

Abstract We present results of our analysis of spectra of the host galaxies of the candidate Tidal Disruption Events (TDEs) XMMSL1 J111527.3+180638 and PTF09axc to determine the nature of these transients. We subtract the starlight component from the host galaxy spectra to determine the origin of the nuclear emission lines. Using a Baldwin–Phillips–Terlevich (BPT) diagram we conclude that the host galaxy of XMMSL1 J111527.3+180638 is classified as a Seyfert galaxy, suggesting this transient is likely to be caused by (extreme) variability in the active galactic nucleus. We find that the host of PTF09axc falls in the ’star-forming’ region of the BPT-diagram, implying that the transient is a strong TDE candidate. For both galaxies we find a WISE-colour difference of W1 − W2 < 0.8, which means there is no indication of a dusty torus and therefore an active galactic nucleus, seemingly contradicting our BPT finding for the host of XMMSL1 J111527.3+180638. We discuss possible reasons for the discrepant results obtained through the two methods.


Author(s):  
M.V. Zanchettin ◽  
C. Feruglio ◽  
M. Bischetti ◽  
A. Malizia ◽  
M. Molina ◽  
...  
Keyword(s):  

Author(s):  
E.K. Denissyuk ◽  
G.K. Aimanova ◽  
S.A. Shomshekova ◽  
I.V. Reva ◽  
M.A. Krugov

Author(s):  
V L Oknyansky ◽  
M S Brotherton ◽  
S S Tsygankov ◽  
A V Dodin ◽  
D-W Bao ◽  
...  

Abstract We present the results of photometric and spectroscopic monitoring campaigns of the changing look AGN NGC 3516 carried out in 2018 to 2020 covering the wavelength range from the X-ray to the optical. The facilities included the telescopes of the CMO SAI MSU, the 2.3-m WIRO telescope, and the XRT and UVOT of Swift. We found that NGC 3516 brightened to a high state and could be classified as Sy1.5 during the late spring of 2020. We have measured time delays in the responses of the Balmer and He II λ4686 lines to continuum variations. In the case of the best-characterized broad Hβ line, the delay to continuum variability is about 17 days in the blue wing and is clearly shorter, 9 days, in the red, which is suggestive of inflow. As the broad lines strengthened, the blue side came to dominate the Balmer lines, resulting in very asymmetric profiles with blueshifted peaks during this high state. During the outburst the X-ray flux reached its maximum on 1 April 2020 and it was the highest value ever observed for NGC 3516 by the Swift observatory. The X-ray hard photon index became softer, ∼1.8 in the maximum on 21 Apr 2020 compared to the mean ∼0.7 during earlier epochs before 2020. We have found that the UV and optical variations correlated well (with a small time delay of 1–2 days) with the X-ray until the beginning of April 2020, but later, until the end of Jun. 2020, these variations were not correlated. We suggest that this fact may be a consequence of partial obscuration by Compton-thick clouds crossing the line of sight.


2021 ◽  
Vol 502 (3) ◽  
pp. 3618-3637
Author(s):  
Muryel Guolo-Pereira ◽  
Daniel Ruschel-Dutra ◽  
Thaisa Storchi-Bergmann ◽  
Allan Schnorr-Müller ◽  
Roberto Cid Fernandes ◽  
...  

ABSTRACT Galaxy mergers are central to our understanding of galaxy formation, especially within the context of hierarchical models. Besides having a large impact on the star formation history, mergers are also able to influence gas motions at the centre of galaxies and trigger an active galactic nucleus (AGN). In this paper, we present a case study of the Seyfert galaxy NGC 2992, which together with NGC 2993 forms the early-stage merger system Arp 245. Using Gemini Multi-Object Spectrograph integral field unit data from the inner 1.1 kpc of the galaxy, we were able to spatially resolve the stellar populations, the ionization mechanism, and kinematics of ionized gas. From full spectral synthesis, we found that the stellar population is primarily composed by old metal-rich stars (t ≥ 1.4 Gyr, Z ≥ 2.0 Z⊙), with a contribution of at most 30 per cent of the light from a young and metal-poor population (t ≤ 100 Myr, Z ≤ 1.0 Z⊙). We detect H α and H β emission from the broad-line region with a full width at half-maximum of ∼2000 $\rm km\, s^{-1}$. The narrow-line region kinematics presents two main components: one from gas orbiting the galaxy disc and a blueshifted (velocity ≈ −200 $\rm km\, s^{-1}$) outflow, possibly correlated with the radio emission, with mass outflow rate of ∼2 M⊙ yr−1 and a kinematic power of ∼2 × 1040 erg s−1 ($\dot{E}_{\mathrm{ out}}$/Lbol ≈ 0.2 per cent). We also show even though the main ionization mechanism is the AGN radiation, ionization by young stars and shocks may also contribute to the emission line ratios presented in the innermost region of the galaxy.


2021 ◽  
Vol 502 (1) ◽  
pp. L61-L65
Author(s):  
Jun Yang ◽  
Ilse van Bemmel ◽  
Zsolt Paragi ◽  
S Komossa ◽  
Feng Yuan ◽  
...  

ABSTRACT Broad Balmer emission lines in active galactic nuclei (AGN) may display dramatic changes in amplitude, even disappearance and re-appearance in some sources. As a nearby galaxy at a redshift of z = 0.0264, Mrk 590 suffered such a cycle of Seyfert type changes between 2006 and 2017. Over the last 50 yr, Mrk 590 also underwent a powerful continuum outburst and a slow fading from X-rays to radio wavelengths with a peak bolometric luminosity reaching about 10 per cent of the Eddington luminosity. To track its past accretion and ejection activity, we performed very long baseline interferometry (VLBI) observations with the European VLBI Network (EVN) at 1.6 GHz in 2015. The EVN observations reveal a faint (∼1.7 mJy) radio jet extending up to ∼2.8 mas (projected scale ∼1.4 pc) toward north, and probably resulting from the very intensive AGN activity. To date, such a parsec-scale jet is rarely seen in the known changing-look AGN. The finding of the faint jet provides further strong support for variable accretion as the origin of the type changes in Mrk 590.


Sign in / Sign up

Export Citation Format

Share Document