scholarly journals A Stellar Mass Dependence of Structured Disks: A Possible Link with Exoplanet Demographics

2021 ◽  
Vol 162 (1) ◽  
pp. 28
Author(s):  
Nienke van der Marel ◽  
Gijs D. Mulders
Keyword(s):  
2018 ◽  
Vol 480 (2) ◽  
pp. 1925-1937
Author(s):  
Toshiyuki Tanaka ◽  
Kenji Hasegawa ◽  
Hidenobu Yajima ◽  
Masato I N Kobayashi ◽  
Naoshi Sugiyama

2012 ◽  
Vol 8 (S295) ◽  
pp. 91-91
Author(s):  
Mattia Fumagalli ◽  
Shannon G. Patel ◽  
Marijn Franx ◽  
Gabriel Brammer ◽  
Pieter van Dokkum ◽  
...  

AbstractWe investigate the evolution of the Hα equivalent width, EW(Hα), with redshift and its dependence on stellar mass, using the first data from the 3D-HST survey, a large spectroscopic Treasury program with the HST-WFC3. Combining our Hα measurements of 854 galaxies at 0.8<z<1.5 with those of ground based surveys at lower and higher redshift, we can consistently determine the evolution of the EW(Hα) distribution from z=0 to z=2.2. We find that at all masses the characteristic EW(Hα) is decreasing towards the present epoch, and that at each redshift the EW(Hα) is lower for high-mass galaxies. We find EW(Hα) ~ (1+z)1.8 with little mass dependence. Qualitatively, this measurement is a model-independent confirmation of the evolution of star forming galaxies with redshift. A quantitative conversion of EW(Hα) to sSFR (specific star-formation rate) is model dependent, because of differential reddening corrections between the continuum and the Balmer lines. The observed EW(Hα) can be reproduced with the characteristic evolutionary history for galaxies, whose star formation rises with cosmic time to z ~ 2.5 and then decreases to z = 0. This implies that EW(Hα) rises to 400 Å at z = 8. The sSFR evolves faster than EW(Hα), as the mass-to-light ratio also evolves with redshift. We find that the sSFR evolves as (1+z)3.2, nearly independent of mass, consistent with previous reddening insensitive estimates. We confirm previous results that the observed slope of the sSFR-z relation is steeper than the one predicted by models, but models and observations agree in finding little mass dependence.


2020 ◽  
Vol 644 ◽  
pp. A87
Author(s):  
L. Wang ◽  
W. J. Pearson ◽  
V. Rodriguez-Gomez

Aims. We aim to perform consistent comparisons between observations and simulations on the mass dependence of the galaxy major merger fraction at low redshift over an unprecedentedly wide range of stellar masses (∼109 to 1012 M⊙). Methods. We first carry out forward modelling of ideal synthetic images of major mergers and non-mergers selected from the Next Generation Illustris Simulations (IllustrisTNG) to include major observational effects. We then train deep convolutional neural networks (CNNs) using realistic mock observations of galaxy samples from the simulations. Subsequently, we apply the trained CNNs to real the Kilo-Degree Survey (KiDS) images of galaxies selected from the Galaxy And Mass Assembly (GAMA) survey. Based on the major merger samples, which are detected in a consistent manner in the observations and simulations, we determine the dependence of major merger fraction on stellar mass at z ∼ 0.15 and make comparisons between the two. Results. The detected major merger fraction in the GAMA/KiDS observations has a fairly mild decreasing trend with increasing stellar mass over the mass range 109 M⊙ <  M* <  1011.5 M⊙. There is good agreement in the mass dependence of the major merger fraction in the GAMA/KiDS observations and the IllustrisTNG simulations over 109.5 M⊙ <  M* <  1010.5 M⊙. However, the observations and the simulations show some differences at M* >  1010.5 M⊙, possibly due to the supermassive blackhole feedback in its low-accretion state in the simulations which causes a sharp transition in the quenched fractions at this mass scale. The discrepancy could also be due to the relatively small volume of the simulations and/or differences in how stellar masses are measured in simulations and observations.


2016 ◽  
Vol 11 (S321) ◽  
pp. 302-302
Author(s):  
Maider Miranda ◽  
Patricia Sánchez-Blázquez ◽  
Chris B. Brook ◽  
Brad K. Gibson

Making use of a fiducial set of simulated disc galaxies spanning a wide range of mass, we examine the influence of stellar mass in the radial metallicity gradients and compare to observational trends from Ho et al. (2015).


2021 ◽  
Vol 922 (1) ◽  
pp. 23
Author(s):  
Shogo Ishikawa ◽  
Teppei Okumura ◽  
Masamune Oguri ◽  
Sheng-Chieh Lin

Abstract We present the clustering analysis of photometric luminous red galaxies (LRGs) at a redshift range of 0.1 ≤ z ≤ 1.05 using 615,317 photometric LRGs selected from the Hyper Suprime-Cam Subaru Strategic Program, covering ∼124 deg2. Our sample covers a broad range of stellar masses and photometric redshifts and enables a halo occupation distribution analysis to study the redshift and stellar-mass dependence of dark halo properties of LRGs. We find a tight correlation between the characteristic dark halo mass to host central LRGs, M min , and the number density of LRGs, independently of redshifts, indicating that the formation of LRGs is associated with the global environment. The M min of LRGs depends only weakly on the stellar mass M ⋆ at M ⋆ ≲ 1010.75 h −2 M ⊙ at 0.3 < z < 1.05, in contrast to the case for all photometrically selected galaxies, for which M min shows significant dependence on M ⋆ even at low M ⋆. The weak stellar-mass dependence is indicative of the dark halo mass being the key parameter for the formation of LRGs, rather than the stellar mass. Our result suggests that the halo mass of ∼1012.5±0.2 h −1 M ⊙ is the critical mass for an efficient halo quenching due to the halo environment. We compare our result with the result of the hydrodynamical simulation to find that low-mass LRGs at z ∼ 1 will increase their stellar masses by an order of magnitude from z = 1 to 0 through mergers and satellite accretions, and that a large fraction of massive LRGs at z < 0.9 consist of LRGs that recently migrated from massive green valley galaxies or those that evolved from less massive LRGs through mergers and satellite accretions.


Sign in / Sign up

Export Citation Format

Share Document