protoplanetary disks
Recently Published Documents


TOTAL DOCUMENTS

1067
(FIVE YEARS 243)

H-INDEX

94
(FIVE YEARS 14)

2022 ◽  
Vol 924 (1) ◽  
pp. 3
Author(s):  
Ziyan Xu ◽  
Xue-Ning Bai

Abstract Planetesimal formation is a crucial yet poorly understood process in planet formation. It is widely believed that planetesimal formation is the outcome of dust clumping by the streaming instability (SI). However, recent analytical and numerical studies have shown that the SI can be damped or suppressed by external turbulence, and at least the outer regions of protoplanetary disks are likely weakly turbulent due to magneto-rotational instability (MRI). We conduct high-resolution local shearing-box simulations of hybrid particle-gas magnetohydrodynamics (MHD), incorporating ambipolar diffusion as the dominant nonideal MHD effect, applicable to outer disk regions. We first show that dust backreaction enhances dust settling toward the midplane by reducing turbulence correlation time. Under modest level of MRI turbulence, we find that dust clumping is in fact easier than the conventional SI case, in the sense that the threshold of solid abundance for clumping is lower. The key to dust clumping includes dust backreaction and the presence of local pressure maxima, which in our work is formed by the MRI zonal flows overcoming background pressure gradient. Overall, our results support planetesimal formation in the MRI-turbulent outer protoplanetary disks, especially in ring-like substructures.


2022 ◽  
Vol 924 (1) ◽  
pp. L4
Author(s):  
Juan Quiroz ◽  
Nicole L. Wallack ◽  
Bin Ren ◽  
Ruobing Dong ◽  
Jerry W. Xuan ◽  
...  

Abstract Formed in protoplanetary disks around young stars, giant planets can leave observational features such as spirals and gaps in their natal disks through planet–disk interactions. Although such features can indicate the existence of giant planets, protoplanetary disk signals can overwhelm the innate luminosity of planets. Therefore, in order to image planets that are embedded in disks, it is necessary to remove the contamination from the disks to reveal the planets possibly hiding within their natal environments. We observe and directly model the detected disk in the Keck/NIRC2 vortex coronagraph L′-band observations of the single-armed protoplanetary disk around HD 34282. Despite a nondetection of companions for HD 34282, this direct disk modeling improves planet detection sensitivity by up to a factor of 2 in flux ratio and ∼10 M Jupiter in mass. This suggests that performing disk modeling can improve directly imaged planet detection limits in systems with visible scattered light disks, and can help to better constrain the occurrence rates of self-luminous planets in these systems.


2021 ◽  
Vol 924 (1) ◽  
pp. L1
Author(s):  
Chris Lintott ◽  
Michele T. Bannister ◽  
J. Ted Mackereth

Abstract Planetesimals inevitably bear the signatures of their natal environment, preserving in their composition a record of the metallicity of their system’s original gas and dust, albeit one altered by the formation processes. When planetesimals are dispersed from their system of origin, this record is carried with them. As each star is likely to contribute at least 1012 interstellar objects (ISOs), the Galaxy’s drifting population of ISOs provides an overview of the properties of its stellar population through time. Using the EAGLE cosmological simulations and models of protoplanetary formation, our modeling predicts an ISO population with a bimodal distribution in their water mass fraction: objects formed in low-metallicity, typically older, systems have a higher water fraction than their counterparts formed in high-metallicity protoplanetary disks, and these water-rich objects comprise the majority of the population. Both detected ISOs seem to belong to the lower water fraction population; these results suggest they come from recently formed systems. We show that the population of ISOs in galaxies with different star formation histories will have different proportions of objects with high and low water fractions. This work suggests that it is possible that the upcoming Vera C. Rubin Observatory Legacy Survey of Space and Time will detect a large enough population of ISOs to place useful constraints on models of protoplanetary disks, as well as galactic structure and evolution.


Author(s):  
E. I. Vorobyov ◽  
A. M. Skliarevskii ◽  
T. Molyarova ◽  
V. Akimkin ◽  
Y. Pavlyuchenkov ◽  
...  
Keyword(s):  

2021 ◽  
Vol 923 (2) ◽  
pp. 165
Author(s):  
Shijie Wang ◽  
Kazuhiro D. Kanagawa ◽  
Yasushi Suto

Abstract Recent ALMA observations have identified a variety of dust gaps in protoplanetary disks, which are commonly interpreted to be generated by unobserved planets. Predicting mass of such embedded planets is of fundamental importance in comparing those disk architectures with the observed diversity of exoplanets. The prediction, however, depends on the assumption that whether the same gap structure exists in the dust component alone or in the gas component as well. We assume a planet can only open a gap in the gas component when its mass exceeds the pebble isolation mass by considering the core-accretion scenario. We then propose two criteria to distinguish if a gap is opened in the dust disk alone or the gas gap as well when observation data on the gas profile is not available. We apply the criteria to 35 disk systems with a total of 55 gaps compiled from previous studies and classify each gap into four different groups. The classification of the observed gaps allows us to predict the mass of embedded planets in a consistent manner with the pebble isolation mass. We find that outer gaps are mostly dust alone, while inner gaps are more likely to be associated with a gas gap as well. The distribution of such embedded planets is very different from the architecture of the observed planetary systems, suggesting that significant inward migration is required in their evolution.


2021 ◽  
Vol 923 (1) ◽  
pp. 70
Author(s):  
Shangjia Zhang ◽  
Xiao Hu ◽  
Zhaohuan Zhu ◽  
Jaehan Bae

Abstract Rings and gaps are ubiquitous in protoplanetary disks. Larger dust grains will concentrate in gaseous rings more compactly due to stronger aerodynamic drag. However, the effects of dust concentration on the ring’s thermal structure have not been explored. Using MCRT simulations, we self-consistently construct ring models by iterating the ring’s thermal structure, hydrostatic equilibrium, and dust concentration. We set up rings with two dust populations having different settling and radial concentration due to their different sizes. We find two mechanisms that can lead to temperature dips around the ring. When the disk is optically thick, the temperature drops outside the ring, which is the shadowing effect found in previous studies adopting a single-dust population in the disk. When the disk is optically thin, a second mechanism due to excess cooling of big grains is found. Big grains cool more efficiently, which leads to a moderate temperature dip within the ring where big dust resides. This dip is close to the center of the ring. Such a temperature dip within the ring can lead to particle pileup outside the ring and feedback to the dust distribution and thermal structure. We couple the MCRT calculations with a 1D dust evolution model and show that the ring evolves to a different shape and may even separate to several rings. Overall, dust concentration within rings has moderate effects on the disk’s thermal structure, and a self-consistent model is crucial not only for protoplanetary disk observations but also for planetesimal and planet formation studies.


2021 ◽  
Vol 923 (1) ◽  
pp. 128
Author(s):  
Karina Maucó ◽  
Carlos Carrasco-González ◽  
Matthias R. Schreiber ◽  
Anibal Sierra ◽  
Johan Olofsson ◽  
...  

Abstract One of the most important questions in the field of planet formation is how millimeter- and centimeter-sized dust particles overcome radial drift and fragmentation barriers to form kilometer-sized planetesimals. ALMA observations of protoplanetary disks, in particular transition disks or disks with clear signs of substructures, can provide new constraints on theories of grain growth and planetesimal formation, and therefore represent one possibility for progress on this issue. We here present ALMA band 4 (2.1 mm) observations of the transition disk system Sz 91, and combine them with previously obtained band 6 (1.3 mm) and band 7 (0.9 mm) observations. Sz 91, with its well-defined millimeter ring, more extended gas disk, and evidence of smaller dust particles close to the star, constitutes a clear case of dust filtering and the accumulation of millimeter-sized particles in a gas pressure bump. We compute the spectral index (nearly constant at ∼3.34), optical depth (marginally optically thick), and maximum grain size (∼0.61 mm) in the dust ring from the multi-wavelength ALMA observations, and compare the results with recently published simulations of grain growth in disk substructures. Our observational results are in strong agreement with the predictions of models for grain growth in dust rings that include fragmentation and planetesimal formation through streaming instability.


2021 ◽  
Vol 923 (1) ◽  
pp. L4
Author(s):  
Z. W. Hu ◽  
R. P. Winarski

Abstract Planets are known to grow out of a star-encircling disk of the gas and dust inherited from an interstellar cloud; their formation is thought to begin with coagulation of submicron dust grains into aggregates, the first foundational stage of planet formation. However, with nanoscale and submicron solids unobservable directly in the interstellar medium (ISM) and protoplanetary disks, how dust grains grow is unclear, as are the morphology and structure of interstellar grains and the whereabouts and form of “missing iron.” Here we show an elementary composite binary in 3D sub-10 nm detail—and the alignments of its two subunits and nanoinclusions and a population of elongated composite grains locked in a primitive cosmic dust particle—noninvasively uncovered with phase-contrast X-ray nanotomography. The binary comprises a pair of oblate, quasi-spheroidal grains whose alignment and shape meet the astrophysical constraints on polarizing interstellar grains. Each member of the pair contains a high-density core of octahedral nanocrystals whose twin relationship is consistent with the magnetite’s diagnostic property at low temperatures, with a mantle exhibiting nanoscale heterogeneities, rounded edges, and pitted surfaces. This elongated binary evidently formed from an axially aligned collision of the two similar composite grains whose core–mantle structure and density gradients are consistent with interstellar processes and astronomical evidence for differential depletion. Our findings suggest that the ISM is threaded with dust grains containing preferentially oriented iron-rich magnetic nanocrystals that hold answers to astronomical problems from dust evolution, grain alignment, and the structure of magnetic fields to planetesimal growth.


2021 ◽  
Vol 922 (2) ◽  
pp. 213
Author(s):  
Romain Basalgète ◽  
Antonio Jesus Ocaña ◽  
Géraldine Féraud ◽  
Claire Romanzin ◽  
Laurent Philippe ◽  
...  

Abstract Pure acetonitrile (CH3CN) and mixed CO:CH3CN and H2O:CH3CN ices have been irradiated at 15 K with vacuum ultraviolet (VUV) photons in the 7–13.6 eV range using synchrotron radiation. VUV photodesorption yields of CH3CN and of photoproducts have been derived as a function of the incident photon energy. The coadsorption of CH3CN with CO and H2O molecules, which are expected to be among the main constituents of interstellar ices, is found to have no significant influence on the VUV photodesorption spectra of CH3CN, CHCN•, HCN, CN•, and CH3•. Contrary to what has generally been evidenced for most of the condensed molecules, these findings point toward a desorption process for which the CH3CN molecule that absorbs the VUV photon is the one desorbing. It can be ejected in the gas phase as intact CH3CN or in the form of its photodissociation fragments. Astrophysical VUV photodesorption yields, applicable to different locations, are derived and can be incorporated into astrochemical modeling. They vary from 0.67(± 0.33) × 10−5 to 2.0(± 1.0) × 10−5 molecule photon−1 for CH3CN depending on the region considered, which is high compared to other organic molecules such as methanol. These results could explain the multiple detections of gas-phase CH3CN in different regions of the interstellar medium and are well correlated to astrophysical observations of the Horsehead nebula and of protoplanetary disks (such as TW Hya and HD 163296).


Sign in / Sign up

Export Citation Format

Share Document