disc galaxies
Recently Published Documents


TOTAL DOCUMENTS

394
(FIVE YEARS 84)

H-INDEX

58
(FIVE YEARS 8)

Author(s):  
E. Emsellem ◽  
E. Schinnerer ◽  
F. Santoro ◽  
F. Belfiore ◽  
I. Pessa ◽  
...  

2021 ◽  
Vol 508 (1) ◽  
pp. 352-370
Author(s):  
Florent Renaud ◽  
Alessandro B Romeo ◽  
Oscar Agertz

ABSTRACT The morphology of gas-rich disc galaxies at redshift $\sim 1\!-\!3$ is dominated by a few massive clumps. The process of formation or assembly of these clumps and their relation to molecular clouds in contemporary spiral galaxies are still unknown. Using simulations of isolated disc galaxies, we study how the structure of the interstellar medium and the stability regime of the discs change when varying the gas fraction. In all galaxies, the stellar component is the main driver of instabilities. However, the molecular gas plays a non-negligible role in the interclump medium of gas-rich cases, and thus in the assembly of the massive clumps. At scales smaller than a few 100 pc, the Toomre-like disc instabilities are replaced by another regime, especially in the gas-rich galaxies. We find that galaxies at low gas fraction (10 per cent) stand apart from discs with more gas, which all share similar properties in virtually all aspects we explore. For gas fractions below $\approx 20{{\ \rm per\ cent}}$, the clump-scale regime of instabilities disappears, leaving only the large-scale disc-driven regime. Associating the change of gas fraction to the cosmic evolution of galaxies, this transition marks the end of the clumpy phase of disc galaxies, and allows for the onset of spiral structures, as commonly found in the local Universe.


Universe ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. 344
Author(s):  
Paolo Salucci ◽  
Chiara di Paolo

Dark matter (DM) is one of the biggest mystery in the Universe. In this review, we start reporting the evidences for this elusive component and discussing about the proposed particle candidates and scenarios for such phenomenon. Then, we focus on recent results obtained for rotating disc galaxies, in particular for low surface brightness (LSB) galaxies. The main observational properties related to the baryonic matter in LSBs, investigated over the last decades, are briefly recalled. Next, these galaxies are analyzed by means of the mass modelling of their rotation curves both individual and stacked. The latter analysis, via the universal rotation curve (URC) method, results really powerful in giving a global or universal description of the properties of these objects. We report the presence in LSBs of scaling relations among their structural properties that result comparable with those found in galaxies of different morphologies. All this confirms, in disc systems, the existence of a strong entanglement between the luminous matter (LM) and the dark matter (DM). Moreover, we report how in LSBs the tight relationship between their radial gravitational accelerations g and their baryonic components gb results to depend also on the stellar disk length scale and the radius at which the two accelerations have been measured. LSB galaxies strongly challenge the ΛCDM scenario with the relative collisionless dark particle and, alongside with the non-detection of the latter, contribute to guide us towards a new scenario for the DM phenomenon.


2021 ◽  
Vol 508 (1) ◽  
pp. 926-939
Author(s):  
Mahmood Roshan ◽  
Neda Ghafourian ◽  
Tahere Kashfi ◽  
Indranil Banik ◽  
Moritz Haslbauer ◽  
...  

ABSTRACT Many observed disc galaxies harbour a central bar. In the standard cosmological paradigm, galactic bars should be slowed down by dynamical friction from the dark matter halo. This friction depends on the galaxy’s physical properties in a complex way, making it impossible to formulate analytically. Fortunately, cosmological hydrodynamical simulations provide an excellent statistical population of galaxies, letting us quantify how simulated galactic bars evolve within dark matter haloes. We measure bar strengths, lengths, and pattern speeds in barred galaxies in state-of-the-art cosmological hydrodynamical simulations of the IllustrisTNG and EAGLE projects, using techniques similar to those used observationally. We then compare our results with the largest available observational sample at redshift z = 0. We show that the tension between these simulations and observations in the ratio of corotation radius to bar length is 12.62σ (TNG50), 13.56σ (TNG100), 2.94σ (EAGLE50), and 9.69σ (EAGLE100), revealing for the first time that the significant tension reported previously persists in the recently released TNG50. The lower statistical tension in EAGLE50 is actually caused by it only having five galaxies suitable for our analysis, but all four simulations give similar statistics for the bar pattern speed distribution. In addition, the fraction of disc galaxies with bars is similar between TNG50 and TNG100, though somewhat above EAGLE100. The simulated bar fraction and its trend with stellar mass both differ greatly from observations. These dramatic disagreements cast serious doubt on whether galaxies actually have massive cold dark matter haloes, with their associated dynamical friction acting on galactic bars.


Author(s):  
P. E. Mancera Piña ◽  
L. Posti ◽  
G. Pezzulli ◽  
F. Fraternali ◽  
S. M. Fall ◽  
...  

Author(s):  
J S den Brok ◽  
D Chatzigiannakis ◽  
F Bigiel ◽  
J Puschnig ◽  
A T Barnes ◽  
...  

Abstract Both the CO(2-1) and CO(1-0) lines are used to trace the mass of molecular gas in galaxies. Translating the molecular gas mass estimates between studies using different lines requires a good understanding of the behaviour of the CO(2-1)-to-CO(1-0) ratio, R21. We compare new, high quality CO(1-0) data from the IRAM 30-m EMPIRE survey to the latest available CO(2-1) maps from HERACLES, PHANGS-ALMA, and a new IRAM 30-m M51 Large Program. This allows us to measure R21 across the full star-forming disc of nine nearby, massive, star-forming spiral galaxies at 27″(∼1 − 2 kpc) resolution. We find an average R21 = 0.64 ± 0.09 when we take the luminosity-weighted mean of all individual galaxies. This result is consistent with the mean ratio for disc galaxies that we derive from single-pointing measurements in the literature, $R_{\rm 21, lit}~=~0.59^{+0.18}_{-0.09}$. The ratio shows weak radial variations compared to the point-to-point scatter in the data. In six out of nine targets the central enhancement in R21 with respect to the galaxy-wide mean is of order $\sim 10{-}20\%$. We estimate an azimuthal scatter of ∼20% in R21 at fixed galactocentric radius but this measurement is limited by our comparatively coarse resolution of 1.5 kpc. We find mild correlations between R21 and CO brightness temperature, IR intensity, 70-to-160 μm ratio, and IR-to-CO ratio. All correlations indicate that R21 increases with gas surface density, star formation rate surface density, and the interstellar radiation field.


Author(s):  
Robert M Yates ◽  
Bruno M B Henriques ◽  
Jian Fu ◽  
Guinevere Kauffmann ◽  
Peter A Thomas ◽  
...  

Abstract We present a modified version of the L-Galaxies 2020 semi-analytic model of galaxy evolution, which includes significantly increased direct metal enrichment of the circumgalactic medium (CGM) by supernovae (SNe). These more metal-rich outflows do not require increased mass-loading factors, in contrast to some other galaxy evolution models. This modified L-Galaxies 2020 model is able to simultaneously reproduce the gas-phase metallicity (Zg) and stellar metallicity (Z*) radial profiles observed in nearby disc galaxies by MaNGA and MUSE, as well as the observed mass – metallicity relations for gas and stars at z = 0 and their evolution back to z ∼ 2 − 3. A direct CGM enrichment fraction of ∼90 per cent for SNe-II is preferred. We find that massive disc galaxies have slightly flatter Zg profiles than their lower-mass counterparts in L-Galaxies 2020, due to more efficient enrichment of their outskirts via inside-out growth and metal-rich accretion. Such a weak, positive correlation between stellar mass and Zg profile slope is also seen in our MaNGA-DR15 sample of 571 star-forming disc galaxies, although below ${\rm log}_{10}{(M_{*}/{\rm M_\odot} )}{}\sim {}10.0$ this observational result is strongly dependent on the metallicity diagnostic and morphological selection chosen. In addition, a lowered maximum SN-II progenitor mass of 25 M⊙, reflecting recent theoretical and observational estimates, can also provide a good match to observed Zg and Z* profiles at z = 0 in L-Galaxies 2020. However, this model version fails to reproduce an evolution in Zg at fixed mass over cosmic time, or the magnesium abundances observed in the intracluster medium (ICM).


Sign in / Sign up

Export Citation Format

Share Document