scholarly journals BOOSTED TIDAL DISRUPTION BY MASSIVE BLACK HOLE BINARIES DURING GALAXY MERGERS FROM THE VIEW OFN-BODY SIMULATION

2017 ◽  
Vol 834 (2) ◽  
pp. 195 ◽  
Author(s):  
Shuo Li ◽  
F. K. Liu ◽  
Peter Berczik ◽  
Rainer Spurzem

2018 ◽  
Vol 479 (2) ◽  
pp. 1569-1578 ◽  
Author(s):  
Xiao-Jun Wu ◽  
Ye-Fei Yuan


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
M. Dotti ◽  
A. Sesana ◽  
R. Decarli

The study of the dynamical evolution of massive black hole pairs in mergers is crucial in the context of a hierarchical galaxy formation scenario. The timescales for the formation and the coalescence of black hole binaries are still poorly constrained, resulting in large uncertainties in the expected rate of massive black hole binaries detectable in the electromagnetic and gravitational wave spectra. Here, we review the current theoretical understanding of the black hole pairing in galaxy mergers, with a particular attention to recent developments and open issues. We conclude with a review of the expected observational signatures of massive binaries and of the candidates discussed in literature to date.



2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Xinwen Shu ◽  
Wenjie Zhang ◽  
Shuo Li ◽  
Ning Jiang ◽  
Liming Dou ◽  
...  

AbstractOptical transient surveys have led to the discovery of dozens of stellar tidal disruption events (TDEs) by massive black hole in the centers of galaxies. Despite extensive searches, X-ray follow-up observations have produced no or only weak X-ray detections in most of them. Here we report the discovery of delayed X-ray brightening around 140 days after the optical outburst in the TDE OGLE16aaa, followed by several flux dips during the decay phase. These properties are unusual for standard TDEs and could be explained by the presence of supermassive black hole binary or patchy obscuration. In either scenario, the X-rays can be produced promptly after the disruption but are blocked in the early phase, possibly by a radiation-dominated ejecta which leads to the bulk of optical and ultraviolet emission. Our findings imply that the reprocessing is important in the TDE early evolution, and X-ray observations are promising in revealing supermassive black hole binaries.



2014 ◽  
Vol 10 (S312) ◽  
pp. 43-47
Author(s):  
Shuo Li ◽  
Fukun Liu ◽  
Peter Berczik ◽  
Rainer Spurzem

AbstractSupermassive black hole binaries (SMBHBs) are the products of frequent galaxy mergers. It is very hard to be detected in quiescent galaxy. By using one million particle direct N-body simulations on special many-core hardware (GPU cluster), we study the dynamical co-evolution of SMBHB and its surrounding stars, specially focusing on the evolution of stellar tidal disruption event (TDE) rates before and after the coalescence of the SMBHB. We find a boosted TDE rate during the merger of the galaxies. After the coalescence of two supermassive black holes (SMBHs), the post-merger SMBH can get a kick velocity due to the anisotropic GW radiations. Our results about the recoiling SMBH, which oscillates around galactic center, show that most of TDEs are contributed by unbound stars when the SMBH passing through galactic center. In addition, the TDE light curve in SMBHB system is significantly different from the curve for single SMBH, which can be used to identify the SMBHB.



2021 ◽  
Vol 503 (1) ◽  
pp. 498-510
Author(s):  
Imran Tariq Nasim ◽  
Cristobal Petrovich ◽  
Adam Nasim ◽  
Fani Dosopoulou ◽  
Fabio Antonini

ABSTRACT Supermassive black hole (SMBH) binaries represent the main target for missions such as the Laser Interferometer Space Antenna and Pulsar Timing Arrays. The understanding of their dynamical evolution prior to coalescence is therefore crucial to improving detection strategies and for the astrophysical interpretation of the gravitational wave data. In this paper, we use high-resolution N-body simulations to model the merger of two equal-mass galaxies hosting a central SMBH. In our models, all binaries are initially prograde with respect to the galaxy sense of rotation. But, binaries that form with a high eccentricity, e ≳ 0.7, quickly reverse their sense of rotation and become almost perfectly retrograde at the moment of binary formation. The evolution of these binaries proceeds towards larger eccentricities, as expected for a binary hardening in a counter-rotating stellar distribution. Binaries that form with lower eccentricities remain prograde and at comparatively low eccentricities. We study the origin of the orbital flip by using an analytical model that describes the early stages of binary evolution. This model indicates that the orbital plane flip is due to the torque from the triaxial background mass distribution that naturally arises from the galactic merger process. Our results imply the existence of a population of SMBH binaries with a high eccentricity and could have significant implications for the detection of the gravitational wave signal emitted by these systems.



2019 ◽  
Vol 488 (3) ◽  
pp. 4042-4060 ◽  
Author(s):  
Stephen Thorp ◽  
Eli Chadwick ◽  
Alberto Sesana

ABSTRACT We compute the expected cosmic rates of tidal disruption events (TDEs) induced by individual massive black holes (MBHs) and by MBH binaries (MBHBs) – with a specific focus on the latter class – to explore the potential of TDEs to probe the cosmic population of sub-pc MBHBs. Rates are computed by combining MBH and MBHB population models derived from large cosmological simulations with estimates of the induced TDE rates for each class of objects. We construct empirical TDE spectra that fit a large number of observations in the optical, UV, and X-ray and consider their observability by current and future survey instruments. Consistent with results in the literature, and depending on the detailed assumption of the model, we find that LSST and Gaia in optical and eROSITA in X-ray will observe a total of 3000–6000, 80–180, and 600–900 TDEs per year, respectively. Depending on the survey, 1 to several per cent of these are prompted by MBHBs. In particular, both LSST and eROSITA are expected to see 150–450 MBHB-induced TDEs in their respective mission lifetimes, including 5–100 repeated flares. The latter provide an observational sample of binary candidates with relatively low contamination and have the potential of unveiling the sub-pc population of MBHBs in the mass range $10^5\lt M\lt 10^7\, \mathrm{M}_\odot$, thus informing future low-frequency gravitational wave observatories.



2018 ◽  
Vol 868 (2) ◽  
pp. 97 ◽  
Author(s):  
Fazeel M. Khan ◽  
Pedro R. Capelo ◽  
Lucio Mayer ◽  
Peter Berczik


2009 ◽  
Vol 697 (2) ◽  
pp. L149-L152 ◽  
Author(s):  
Xian Chen ◽  
Piero Madau ◽  
Alberto Sesana ◽  
F. K. Liu


2012 ◽  
Vol 8 (S295) ◽  
pp. 265-265
Author(s):  
Jorge Cuadra

AbstractBlack hole binaries form after major galaxy mergers, but their fate is unclear as hardening due to stars gets inefficient at sub-parsec distances. We model an alternative scenario in which the merger is driven by the interaction of the binary with the surrounding gas.†



Sign in / Sign up

Export Citation Format

Share Document