scholarly journals A Circumbinary Disk Model for the Rapid Orbital Shrinkage in Black Hole Low-mass X-Ray Binaries

2018 ◽  
Vol 859 (1) ◽  
pp. 46 ◽  
Author(s):  
Xiao-Tian Xu ◽  
Xiang-Dong Li
Keyword(s):  
X Ray ◽  
Low Mass ◽  
Author(s):  
R Pattnaik ◽  
K Sharma ◽  
K Alabarta ◽  
D Altamirano ◽  
M Chakraborty ◽  
...  

Abstract Low Mass X-ray binaries (LMXBs) are binary systems where one of the components is either a black hole or a neutron star and the other is a less massive star. It is challenging to unambiguously determine whether a LMXB hosts a black hole or a neutron star. In the last few decades, multiple observational works have tried, with different levels of success, to address this problem. In this paper, we explore the use of machine learning to tackle this observational challenge. We train a random forest classifier to identify the type of compact object using the energy spectrum in the energy range 5-25 keV obtained from the Rossi X-ray Timing Explorer archive. We report an average accuracy of 87±13% in classifying the spectra of LMXB sources. We further use the trained model for predicting the classes for LMXB systems with unknown or ambiguous classification. With the ever-increasing volume of astronomical data in the X-ray domain from present and upcoming missions (e.g., SWIFT, XMM-Newton, XARM, ATHENA, NICER), such methods can be extremely useful for faster and robust classification of X-ray sources and can also be deployed as part of the data reduction pipeline.


2015 ◽  
Vol 64-66 ◽  
pp. 1-6 ◽  
Author(s):  
Xiang-Dong Li
Keyword(s):  
X Ray ◽  
Low Mass ◽  

2019 ◽  
Vol 487 (3) ◽  
pp. 3488-3504
Author(s):  
Srimanta Banerjee ◽  
Chandrachur Chakraborty ◽  
Sudip Bhattacharyya

1998 ◽  
Vol 11 (2) ◽  
pp. 775-778
Author(s):  
Simon Portegies Zwart ◽  
Frank Verbunt ◽  
Ene Ergma

We study the formation of low-mass X-ray binaries with a black hole as accreting object. The performed semi-analytic analysis reveals that the formation rate of black holes in low-mass X-ray binaries is about two orders of magnitude smaller than that of systems with a neutron star as accretor. This is contradicted by the six observed systems, which are all transients, which suggest that the majority of these systems has not been seen jet. The birthrate for both type of objects are expected to be similar (for reviews see Cowley 1992, Tanaka & Lewin 1995).


Open Physics ◽  
2007 ◽  
Vol 5 (1) ◽  
pp. 1-10
Author(s):  
James Bleach

AbstractThis work investigates the feasibility of detecting close, detached, black hole-red dwarf binaries, which are expected to be evolutionary precursors of low-mass X-ray binaries (LMXBs). Although this pre-low-mass X-ray binary (pre-LMXB) phase of evolution is predicted theoretically, as yet no such systems have been identified observationally. The calculations presented here suggest that the X-ray luminosity of black hole wind accretion in a pre-LMXB system could exceed the intrinsic X-ray luminosity of the red dwarf secondary star, thereby providing a detection mechanism. However, there is significant uncertainty regarding the efficiency of the conversion of gravitational potential energy to X-ray luminosity resulting from accretion onto a black hole, for example energy may be lost via advection across the event horizon. Still, sources with X-ray luminosities greater than that expected for a red dwarf star, but whose positions coincide with that of a red dwarf would represent candidate pre-LMXB systems. These candidates should be surveyed for the radial velocity shifts that would occur as a result of the orbital motion of a red dwarf star within a close binary system containing a black hole.


2006 ◽  
Vol 2 (S238) ◽  
pp. 339-340
Author(s):  
Wen-Cong Chen ◽  
Xiang-Dong Li

AbstractWe propose a plausible mechanism for orbital angular momentum loss in black-hole intermediate-mass X-ray binaries, assuming that a small fraction of the transferred mass form a circumbinary disc. The disc can effectively drain orbital angular momentum from the binary, leading to the formation of compact black-hole low-mass X-ray binaries. This scenario also suggests the possible existence of luminous, persistent black hole low-mass X-ray binaries.


2014 ◽  
Vol 443 (4) ◽  
pp. 3270-3283 ◽  
Author(s):  
T. Muñoz-Darias ◽  
R. P. Fender ◽  
S. E. Motta ◽  
T. M. Belloni

2016 ◽  
Vol 822 (2) ◽  
pp. L24 ◽  
Author(s):  
Smadar Naoz ◽  
Tassos Fragos ◽  
Aaron Geller ◽  
Alexander P. Stephan ◽  
Frederic A. Rasio

Sign in / Sign up

Export Citation Format

Share Document