gravitational potential energy
Recently Published Documents


TOTAL DOCUMENTS

236
(FIVE YEARS 69)

H-INDEX

25
(FIVE YEARS 4)

GEODYNAMICS ◽  
2021 ◽  
Vol 2(31)2021 (2(31)) ◽  
pp. 5-15
Author(s):  
Alexander. N. Marchenko ◽  
◽  
Serhii Perii ◽  
Ivan Pokotylo ◽  
Zoriana Tartachynska ◽  
...  

The basic goal of this study (as the first step) is to collect the appropriate set of the fundamental astronomic-geodetics parameters for their further use to obtain the components of the density distributions for the terrestrial and outer planets of the Solar system (in the time interval of more than 10 years). The initial data were adopted from several steps of the general way of the exploration of the Solar system by iterations through different spacecraft. The mechanical and geometrical parameters of the planets allow finding the solution of the inverse gravitational problem (as the second stage) in the case of the continued Gaussian density distribution for the Moon, terrestrial planets (Mercury, Venus, Earth, Mars) and outer planets (Jupiter, Saturn, Uranus, Neptune). This law of Gaussian density distribution or normal density was chosen as a partial solution of the Adams-Williamson equation and the best approximation of the piecewise radial profile of the Earth, including the PREM model based on independent seismic velocities. Such conclusion already obtained for the Earth’s was used as hypothetic in view of the approximation problem for other planets of the Solar system where we believing to get the density from the inverse gravitational problem in the case of the Gaussian density distribution for other planets because seismic information, in that case, is almost absent. Therefore, if we can find a stable solution for the inverse gravitational problem and corresponding continue Gaussian density distribution approximated with good quality of planet’s density distribution we come in this way to a stable determination of the gravitational potential energy of the terrestrial and giant planets. Moreover to the planet’s normal low, the gravitational potential energy, Dirichlet’s integral, and other planets’ parameters were derived. It should be noted that this study is considered time-independent to avoid possible time changes in the gravitational fields of the planets.


2021 ◽  
Vol 2120 (1) ◽  
pp. 012014
Author(s):  
D V Lim ◽  
D T K Tien ◽  
E C Y Chung

Abstract This project focused on the implementation of a novel cam-follower mechanism that was deemed to have good potential for practical application into a passive lower limb exoskeleton to determine its effectiveness in reducing the energy requirement of the user and its ability to match the walking gait of the user. The design of this novel-cam follower mechanism is inspired by the retractable mechanism of a ballpen. The cam follower mechanism was incorporated into a passive lower limb exoskeleton that was available prior to the study. Passive exoskeletons are intended to augment the load carrying capacity of the user through mechanical means instead of relying on external power. The walking gait study was conducted using physical testing. The mechanism was found to cause the user to bend below his natural centre of gravity a couple of times throughout the walking cycle. The user also had to stabilize himself from being rocked from side to side. Energy calculations were likewise conducted to investigate the energy consumption for a full cycle. The interchange among gravitational potential energy, spring potential energy and kinetic energy of the mechanism for a full walking cycle did not indicate possible advantage for the user.


2021 ◽  
Vol 923 (2) ◽  
pp. 203
Author(s):  
Raymond C. Simons ◽  
Casey Papovich ◽  
Ivelina Momcheva ◽  
Jonathan R. Trump ◽  
Gabriel Brammer ◽  
...  

Abstract We report on the gas-phase metallicity gradients of a sample of 238 star-forming galaxies at 0.6 < z < 2.6, measured through deep near-infrared Hubble Space Telescope slitless spectroscopy. The observations include 12 orbit depth Hubble/WFC3 G102 grism spectra taken as a part of the CANDELS Lyα Emission at Reionization (CLEAR) survey, and archival WFC3 G102+G141 grism spectra overlapping the CLEAR footprint. The majority of galaxies in this sample are consistent with having a zero or slightly positive metallicity gradient (dZ/dR ≥ 0, i.e., increasing with radius) across the full mass range probed (8.5 < log M */M ⊙ < 10.5). We measure the intrinsic population scatter of the metallicity gradients, and show that it increases with decreasing stellar mass—consistent with previous reports in the literature, but confirmed here with a much larger sample. To understand the physical mechanisms governing this scatter, we search for correlations between the observed gradient and various stellar population properties at fixed mass. However, we find no evidence for a correlation with the galaxy properties we consider—including star formation rates, sizes, star formation rate surface densities, and star formation rates per gravitational potential energy. We use the observed weakness of these correlations to provide material constraints for predicted intrinsic correlations from theoretical models.


2021 ◽  
Author(s):  
◽  
Hamish Hirschberg

<p>I model the vertically averaged deviatoric stress field for New Zealand using velocity and crustal density data. I use a thin sheet model of a viscously deforming lithosphere, averaging over a depth of 100 km and solve the stress balance equation. Two methods of solving the stress balance equation are compared: one method solves first for deviatoric stresses due to gravitational potential energy per unit volume before accounting for deviatoric stresses due to boundary conditions; the other method assumes an isotropic viscosity to relate deviatoric stress to strain rate, solving for the viscosity field. Under synthetic testing, the two step method is able to cope with high levels of noise but contains edge effects. The method solving for viscosity is accurate at low noise levels, however, it is unreliable at high noise levels. I apply the two step method to New Zealand using a Quaternary and a GPS-derived velocity model. Vertically averaged deviatoric stress magnitudes are found to be 10-30 MPa, similar to magnitudes found for other plate-boundary zones. Gravitational and boundary stresses each account for approximately half of the full deviatoric stress. Effective viscosities are found to be 1-10×10²¹ Pa s in the regions of most active deformation, which can be interpreted in terms of the long term strength of the lithosphere controlled by temperature and/or lithology.</p>


2021 ◽  
Author(s):  
◽  
Hamish Hirschberg

<p>I model the vertically averaged deviatoric stress field for New Zealand using velocity and crustal density data. I use a thin sheet model of a viscously deforming lithosphere, averaging over a depth of 100 km and solve the stress balance equation. Two methods of solving the stress balance equation are compared: one method solves first for deviatoric stresses due to gravitational potential energy per unit volume before accounting for deviatoric stresses due to boundary conditions; the other method assumes an isotropic viscosity to relate deviatoric stress to strain rate, solving for the viscosity field. Under synthetic testing, the two step method is able to cope with high levels of noise but contains edge effects. The method solving for viscosity is accurate at low noise levels, however, it is unreliable at high noise levels. I apply the two step method to New Zealand using a Quaternary and a GPS-derived velocity model. Vertically averaged deviatoric stress magnitudes are found to be 10-30 MPa, similar to magnitudes found for other plate-boundary zones. Gravitational and boundary stresses each account for approximately half of the full deviatoric stress. Effective viscosities are found to be 1-10×10²¹ Pa s in the regions of most active deformation, which can be interpreted in terms of the long term strength of the lithosphere controlled by temperature and/or lithology.</p>


2021 ◽  
Vol 57 (1) ◽  
pp. 015012
Author(s):  
Unofre B Pili ◽  
Renante R Violanda

Abstract The video of a free-falling object was analysed in Tracker in order to extract the position and time data. On the basis of these data, the velocity, gravitational potential energy, kinetic energy, and the work done by gravity were obtained. These led to a rather simultaneous validation of the conservation law of energy and the work–energy theorem. The superimposed plots of the kinetic energy, gravitational potential energy, and the total energy as respective functions of time and position demonstrate energy conservation quite well. The same results were observed from the plots of the potential energy against the kinetic energy. On the other hand, the work–energy theorem has emerged from the plot of the total work-done against the change in kinetic energy. Because of the accessibility of the setup, the current work is seen as suitable for a home-based activity, during these times of the pandemic in particular in which online learning has remained to be the format in some countries. With the guidance of a teacher, online or face-to-face, students in their junior or senior high school—as well as for those who are enrolled in basic physics in college—will be able to benefit from this work.


2021 ◽  
Vol 930 ◽  
Author(s):  
Hugo N. Ulloa ◽  
Juvenal A. Letelier

Thermally driven flows in fractures play a key role in enhancing the heat transfer and fluid mixing across the Earth's lithosphere. Yet the energy pathways in such confined environments have not been characterised. Building on Letelier et al. (J. Fluid Mech., vol. 864, 2019, pp. 746–767), we introduce novel expressions for energy transfer rates – energetics – of geometrically constrained Rayleigh–Bénard convection in Hele-Shaw cells (HS-RBC) based on two different conceptual frameworks. First, we derived the energetics following the well-established framework introduced by Winters et al. (J. Fluid Mech., vol. 289, 1995, pp. 115–128), in which the gravitational potential energy, $E_{\textit {p}}$ , is decomposed into its available, $E_{\textit {ap}}$ , and background, $E_{\textit {bp}}$ , components. Secondly, we derived the energetics considering a new decomposition for $E_{\textit {p}}$ , named dynamic, $E_{\textit {dp}}$ , and reference, $E_{\textit {rp}}$ , potential energies; $E_{\textit {dp}}$ is defined as the departure of the system's potential energy from the reference state $E_{\textit {rp}}$ , determined by the ‘energy’ of the scalar fluctuations. For HS-RBC, both frameworks lead to the same energy transfer rates at a steady state, satisfying the relationship $\langle E_{\textit {ap}} \rangle _{\tau } = \langle E_{\textit {dp}} \rangle _{\tau } + 1/6$ . Consistent with the work by Hughes et al. (J. Fluid Mech., vol. 729, 2013) on three-dimensional Rayleigh–Bénard convection, we report analytical expressions for the energetics and efficiencies of HS-RBC in terms of the Rayleigh number and the global Nusselt number. Additionally, we performed numerical experiments to illustrate the application of the energetics for the analysis of HS-RBC. Finally, we discuss the impact of the thermal forcing and the geometrical control exerted by Hele-Shaw cells on the development of boundary layers, protoplumes and the self-organisation of large-scale flows.


2021 ◽  
Vol 13 (21) ◽  
pp. 11871
Author(s):  
María Videgain ◽  
Joan J. Manyà ◽  
Mariano Vidal ◽  
Eva Cristina Correa ◽  
Belén Diezma ◽  
...  

The susceptibility to fragmentation of biochar is an important property to consider in field applications. Physical and mechanical properties of wood-derived biochars from vine shoots and holm oak were studied to evaluate the effect of biomass feedstock, final pyrolysis temperature and application conditions. Vine shoots and holm oak pruning residues were selected for biochar production. Slow pyrolysis experiments were conducted at two different final temperatures (400 and 600 °C). Physical and chemical characteristics of biomass and biochars were determined. Impact strength was evaluated through the measurement of the gravitational potential energy per unit area (J mm−2) necessary for the breakage of biochar fragments. Shear strength (N mm−2) and a combination of shear/compression strengths (N) were analyzed using a Universal Texture Analyzer. A particular mechanical treatment was carried out on biochar samples to simulate the processing bodies of a commercial manure spreader, under two gravimetric moisture contents. Holm oak-derived biochar was more resistant than vine shoot-derived biochar to the applied forces. Vine shoots-derived biochar did not show a significantly different mechanical behavior between temperatures. Holm Oak-derived biochar produced at the higher final pyrolysis temperature showed higher resistance to be broken into smaller pieces. Moistening resulted in an adequate practice to improve mechanical spreading.


2021 ◽  
Author(s):  
Xiangyu Wang ◽  
Hongjuan Zhang ◽  
Xiaogang Zhang ◽  
Long Quan

Abstract In the hydraulic lifting systems of wheel loaders, the valve controlled systems are used to drive the hydraulic cylinder to complete frequent lifting and falling operations. The gravitational potential energy of the lifting system, accumulated in the lifting process, is converted into heat energy through the throttling port of the valve during the falling processes, which results in significant throttling loss and severe system overheating. To solve the problems, a potential energy regeneration and utilization system is proposed, where the closed loop pump controlled circuit based on the gravity self-balancing hydraulic cylinder is adopted to eliminate throttling loss, and the gravity self-balancing chamber of the cylinder is directly connected with accumulator to recycle gravity potential energy. In the research, the structure and working principle of the proposed hydraulic system is analyzed first, then the co-simulation model and the test prototype are established to investigate the working and energy characteristics of the proposed system. Test results indicate that, compared with the traditional valve controlled hydraulic system, 58.9% energy consumption reduction can be expected for the hydraulic pump by adopting the proposed system under the same working condition.


2021 ◽  
Vol 18 (5) ◽  
pp. 172988142110406
Author(s):  
Wang Buyun ◽  
Liang Yi ◽  
Xu Dezhang ◽  
Zhang Yongde ◽  
Xu Yong

This article focuses on the topic of the structural design of surgical radioactive surgery robot for prostate cancer. To improve the weight-to-payload ratio of surgery robot end-effector, the energy consumption and stability of robot joint drive and reducing the displacement and deformation of needle insertion in soft tissue. This article discusses the new static torque balancing method and multi-needle insertion soft tissue stabilization mechanisms that may be used in previously articulated seed implantation robots. Compared with the existing balancing system schemes, we adopt the idea of mutual conversion of gravitational potential energy and elastic potential energy and establish a static balancing model. With preloaded displacement parameter of the spring α, the variable gravity torque balance of robot arm can be achieved. Torque and equivalent gravity balancing distribution with the spring balance system and the quantitative evaluation experiment were performed, and experiment results provide evidence that these spring balance devices can basically compensate the gravity torque of the robot arm. In addition, we used nonlinear spring–damper model to establish multi-needles insertion soft tissue force model. Then, a variable multi-needle insertion soft tissue stabilization device is designed with six working modes. The innovative design of this device is the use of the first four needles that are introduced simultaneously on either side of the midline. Initially completed displacement simulation of different numbers of needle insertion prostate tissue, experiment results indicate that multi-needle puncture mechanism could reduce prostate displacement in the y- or z-direction. By this method, the prostate may be fixed, thus this mechanism maybe reduces rotation of the prostate and enabling subsequent needles to be inserted accurately.


Sign in / Sign up

Export Citation Format

Share Document