scholarly journals Measuring Star Formation Histories, Distances, and Metallicities with Pixel Color–Magnitude Diagrams. I. Model Definition and Mock Tests

2019 ◽  
Vol 876 (1) ◽  
pp. 78 ◽  
Author(s):  
B. A. Cook ◽  
Charlie Conroy ◽  
Pieter van Dokkum ◽  
Joshua S. Speagle
2020 ◽  
Vol 500 (3) ◽  
pp. 3240-3253
Author(s):  
Amanda R Lopes ◽  
Eduardo Telles ◽  
Jorge Melnick

ABSTRACT We discuss the implications of assuming different star formation histories (SFH) in the relation between star formation rate (SFR) and mass derived by the spectral energy distribution fitting (SED). Our analysis focuses on a sample of H ii galaxies, dwarf starburst galaxies spectroscopically selected through their strong narrow emission lines in SDSS DR13 at z < 0.4, cross-matched with photometric catalogues from GALEX, SDSS, UKIDSS, and WISE. We modelled and fitted the SEDs with the code CIGALE adopting different descriptions of SFH. By adding information from different independent studies, we find that H ii galaxies are best described by episodic SFHs including an old (10 Gyr), an intermediate age (100−1000 Myr) and a recent population with ages < 10 Myr. H ii galaxies agree with the SFR−M* relation from local star-forming galaxies, and only lie above such relation when the current SFR is adopted as opposed to the average over the entire SFH. The SFR−M* demonstrated not to be a good tool to provide additional information about the SFH of H ii galaxies, as different SFH present a similar behaviour with a spread of <0.1 dex.


2021 ◽  
Vol 503 (3) ◽  
pp. 3309-3325
Author(s):  
Sabine Bellstedt ◽  
Aaron S G Robotham ◽  
Simon P Driver ◽  
Jessica E Thorne ◽  
Luke J M Davies ◽  
...  

ABSTRACT We analyse the metallicity histories of ∼4500 galaxies from the GAMA survey at z < 0.06 modelled by the SED-fitting code ProSpect using an evolving metallicity implementation. These metallicity histories, in combination with the associated star formation histories, allow us to analyse the inferred gas-phase mass–metallicity relation. Furthermore, we extract the mass–metallicity relation at a sequence of epochs in cosmic history, to track the evolving mass–metallicity relation with time. Through comparison with observations of gas-phase metallicity over a large range of redshifts, we show that, remarkably, our forensic SED analysis has produced an evolving mass–metallicity relationship that is consistent with observations at all epochs. We additionally analyse the three-dimensional mass–metallicity–SFR space, showing that galaxies occupy a clearly defined plane. This plane is shown to be subtly evolving, displaying an increased tilt with time caused by general enrichment, and also the slowing down of star formation with cosmic time. This evolution is most apparent at lookback times greater than 7 Gyr. The trends in metallicity recovered in this work highlight that the evolving metallicity implementation used within the SED-fitting code ProSpect produces reasonable metallicity results over the history of a galaxy. This is expected to provide a significant improvement to the accuracy of the SED-fitting outputs.


2014 ◽  
Vol 446 (3) ◽  
pp. 2789-2801 ◽  
Author(s):  
Edouard J. Bernard ◽  
Annette M. N. Ferguson ◽  
Jenny C. Richardson ◽  
Mike J. Irwin ◽  
Michael K. Barker ◽  
...  

2009 ◽  
Vol 393 (2) ◽  
pp. 406-418 ◽  
Author(s):  
Yan-Mei Chen ◽  
Vivienne Wild ◽  
Guinevere Kauffmann ◽  
Jérémy Blaizot ◽  
Marc Davis ◽  
...  

2008 ◽  
Vol 4 (S258) ◽  
pp. 61-72
Author(s):  
Monica Tosi

AbstractThe colour-magnitude diagrams of resolved stellar populations are the best tool to study the star formation histories of the host galactic regions. In this review the method to derive star formation histories by means of synthetic colour-magnitude diagrams is briefly outlined, and the results of its application to resolved galaxies of various morphological types are summarized. It is shown that all the galaxies studied so far were already forming stars at the lookback time reached by the observational data, independently of morphological type and metallicity. Early-type galaxies have formed stars predominantly, but in several cases not exclusively, at the earliest epochs. All the other galaxies appear to have experienced rather continuous star formation activities throughout their lifetimes, although with significant rate variations and, sometimes, short quiescent phases.


2018 ◽  
Vol 616 ◽  
pp. A96 ◽  
Author(s):  
Yves Revaz ◽  
Pascale Jablonka

We present the results of a set of high-resolution chemo-dynamical simulations of dwarf galaxies in a ΛCDM cosmology. Out of an original (3.4 Mpc/h)3 cosmological box, a sample of 27 systems are re-simulated from z = 70 to z = 0 using a zoom-in technique. Gas and stellar properties are confronted to the observations in the greatest details: in addition to the galaxy global properties, we investigated the model galaxy velocity dispersion profiles, half-light radii, star formation histories, stellar metallicity distributions, and [Mg/Fe] abundance ratios. The formation and sustainability of the metallicity gradients and kinematically distinct stellar populations are also tackled. We show how the properties of six Local Group dwarf galaxies, NGC 6622, Andromeda II, Sculptor, Sextans, Ursa Minor and Draco are reproduced, and how they pertain to three main galaxy build-up modes. Our results indicate that the interaction with a massive central galaxy could be needed for a handful of Local Group dwarf spheroidal galaxies only, the vast majority of the systems and their variety of star formation histories arising naturally from a ΛCDM framework. We find that models fitting well the local Group dwarf galaxies are embedded in dark haloes of mass between 5 × 108 to a few 109 M⊙, without any missing satellite problem. We confirm the failure of the abundance matching approach at the mass scale of dwarf galaxies. Some of the observed faint however gas-rich galaxies with residual star formation, such as Leo T and Leo P, remain challenging. They point out the need of a better understanding of the UV-background heating.


Sign in / Sign up

Export Citation Format

Share Document