scholarly journals A Tidal Disruption Event Candidate Discovered in the Active Galactic Nucleus SDSS J022700.77-042020.6

2020 ◽  
Vol 894 (2) ◽  
pp. 93 ◽  
Author(s):  
Zhu Liu ◽  
Dongyue Li ◽  
He-Yang Liu ◽  
Youjun Lu ◽  
Weimin Yuan ◽  
...  
2021 ◽  
Vol 921 (2) ◽  
pp. L40
Author(s):  
Joheen Chakraborty ◽  
Erin Kara ◽  
Megan Masterson ◽  
Margherita Giustini ◽  
Giovanni Miniutti ◽  
...  

2018 ◽  
Vol 475 (3) ◽  
pp. 4011-4019 ◽  
Author(s):  
J S Bright ◽  
R P Fender ◽  
S E Motta ◽  
K Mooley ◽  
Y C Perrott ◽  
...  

2018 ◽  
Vol 854 (2) ◽  
pp. 86 ◽  
Author(s):  
T. Eftekhari ◽  
E. Berger ◽  
B. A. Zauderer ◽  
R. Margutti ◽  
K. D. Alexander

2020 ◽  
Vol 891 (1) ◽  
pp. 93 ◽  
Author(s):  
K. Decker French ◽  
Iair Arcavi ◽  
Ann I. Zabludoff ◽  
Nicholas Stone ◽  
Daichi Hiramatsu ◽  
...  

2019 ◽  
Vol 487 (4) ◽  
pp. 4965-4984 ◽  
Author(s):  
J J Zanazzi ◽  
Dong Lai

ABSTRACT After the tidal disruption event (TDE) of a star around a supermassive black hole (SMBH), the bound stellar debris rapidly forms an accretion disc. If the accretion disc is not aligned with the spinning SMBH’s equatorial plane, the disc will be driven into Lense–Thirring precession around the SMBH’s spin axis, possibly affecting the TDE’s light curve. We carry out an eigenmode analysis of such a disc to understand how the disc’s warp structure, precession, and inclination evolution are influenced by the disc’s and SMBH’s properties. We find an oscillatory warp may develop as a result of strong non-Keplarian motion near the SMBH. The global disc precession frequency matches the Lense–Thirring precession frequency of a rigid disc around a spinning black hole within a factor of a few when the disc’s accretion rate is high, but deviates significantly at low accretion rates. Viscosity aligns the disc with the SMBH’s equatorial plane over time-scales of days to years, depending on the disc’s accretion rate, viscosity, and SMBH’s mass. We also examine the effect of fallback material on the warp evolution of TDE discs, and find that the fallback torque aligns the TDE disc with the SMBH’s equatorial plane in a few to tens of days for the parameter space investigated. Our results place constraints on models of TDE emission which rely on the changing disc orientation with respect to the line of sight to explain observations.


Science ◽  
2018 ◽  
pp. eaao4669 ◽  
Author(s):  
S. Mattila ◽  
M. Pérez-Torres ◽  
A. Efstathiou ◽  
P. Mimica ◽  
M. Fraser ◽  
...  

2019 ◽  
Vol 492 (2) ◽  
pp. 1634-1640
Author(s):  
Sudip Chakraborty ◽  
Sudip Bhattacharyya ◽  
Chandrachur Chakraborty ◽  
A R Rao

ABSTRACT An estimate of the jet inclination angle relative to the accreting black hole’s spin can be useful to probe the jet triggering mechanism and the disc–jet coupling. A tidal disruption event (TDE) of a star by a supermassive spinning black hole provides an excellent astrophysical laboratory to study the jet direction through the possibility of jet precession. In this work, we report a new method to constrain the jet inclination angle β and apply it to the well-sampled jetted TDE Swift J1644+57. This method involves X-ray data analysis and comparisons of jet models with broad properties of the observed X-ray dips, to estimate the upper limit of the extent of the contribution of a plausible jet precession to these X-ray dips. From this limit, we find that β is very likely to be less than ∼15° for Swift J1644+57. Such a well-constrained jet inclination angle could be useful to probe the jet physics. The main advantage of our method is that it does not need to assume an origin of the observed X-ray dips, and the conclusion does not depend on any particular type of jet precession (e.g. the one due to the Lense–Thirring effect) or any specific value of precession frequency or any particular jet model. These make this method reliable and applicable to other jetted TDEs, as well as to other jetted accreting systems.


2020 ◽  
Vol 497 (2) ◽  
pp. 1925-1934 ◽  
Author(s):  
Sebastian Gomez ◽  
Matt Nicholl ◽  
Philip Short ◽  
Raffaella Margutti ◽  
Kate D Alexander ◽  
...  

ABSTRACT AT 2018hyz (= ASASSN-18zj) is a tidal disruption event (TDE) located in the nucleus of a quiescent E+A galaxy at a redshift of z = 0.04573, first detected by the All-Sky Automated Survey for Supernovae (ASAS-SN). We present optical+UV photometry of the transient, as well as an X-ray spectrum and radio upper limits. The bolometric light curve of AT 2018hyz is comparable to other known TDEs and declines at a rate consistent with a t−5/3 at early times, emitting a total radiated energy of E = 9 × 1050 erg. An excess bump appears in the UV light curve about 50 d after bolometric peak, followed by a flattening beyond 250 d. We detect a constant X-ray source present for at least 86 d. The X-ray spectrum shows a total unabsorbed flux of ∼4 × 10−14 erg cm−2 s−1 and is best fit by a blackbody plus power-law model with a photon index of Γ = 0.8. A thermal X-ray model is unable to account for photons >1 keV, while a radio non-detection favours inverse-Compton scattering rather than a jet for the non-thermal component. We model the optical and UV light curves using the Modular Open-Source Fitter for Transients (MOSFiT) and find a best fit for a black hole of 5.2 × 106 M⊙ disrupting a 0.1 M⊙ star; the model suggests the star was likely only partially disrupted, based on the derived impact parameter of β = 0.6. The low optical depth implied by the small debris mass may explain how we are able to see hydrogen emission with disc-like line profiles in the spectra of AT 2018hyz (see our companion paper).


Sign in / Sign up

Export Citation Format

Share Document