Pristine PSP/WISPR Observations of the Circumsolar Dust Ring near Venus's Orbit

2021 ◽  
Vol 910 (2) ◽  
pp. 157
Author(s):  
Guillermo Stenborg ◽  
Brendan Gallagher ◽  
Russell A. Howard ◽  
Phillip Hess ◽  
Nour Eddine Raouafi
Keyword(s):  
2008 ◽  
Vol 485 (3) ◽  
pp. L25-L28 ◽  
Author(s):  
C. Vlahakis ◽  
M. Baes ◽  
G. Bendo ◽  
A. Lundgren
Keyword(s):  

2000 ◽  
Vol 39 (1) ◽  
pp. 47-52
Author(s):  
Dolores Maravilla
Keyword(s):  

Una gran cantidad de partículas de polvo se concentra alrededor del Sol cuando nuestra estrella está en fase de actividad mínima. La concentración está localizada a 4 radios solares. La dinámica de estas partículas está modulada por las fuerzas: gravitacional, electromagnética y por los arrastres, así como por la presión de radiación. Todas estas fuerzas están incluidas en la ecuación de momento. Al mismo tiempo, el polvo está perdiendo masa por sublimación y tanto la presión de radiación como la sublimación controlan el tiempo de vida del polvo y modifican los parámetros orbitales. Se considera que el campo magnético sólo tiene una componente; en este caso, esa componente es la radial. Se discuten algunos aspectos físicos de la dinámica del polvo.


1996 ◽  
Vol 150 ◽  
pp. 309-314
Author(s):  
Michael G. Hauser

AbstractThe COBE Diffuse Infrared Background Experiment has obtained some of the most extensive observations of the interplanetary dust (IPD) cloud ever assembled. For the 10 months of cryogenic operation, the brightness of the entire celestial, sphere was mapped with an 0.7° x 0.7° field of view at wavelengths of 1.25, 2.2, 3.5, 4.9, 12, 25, 60, 100, 140, and 240 μm, and the linear polarization was mapped at 1.25, 2.2, and 3.5 μm. Observations with reduced sensitivity continued at all wavelengths short of 12 μm for over 3 years after cryogen expiration. Throughout these observations, nearly 1/2 of the sky was mapped every day at elongation angles ranging from 64° to 124°. I describe the DIRBE and the general character of the infrared sky, outline the DIRBE team's approach to isolating the IPD signal, and review results of our initial studies of the zodiacal dust bands, the circumsolar dust ring, and the character of IPD cloud particles.


2016 ◽  
Vol 821 (2) ◽  
pp. 82 ◽  
Author(s):  
Satoshi Okuzumi ◽  
Munetake Momose ◽  
Sin-iti Sirono ◽  
Hiroshi Kobayashi ◽  
Hidekazu Tanaka

Science ◽  
1992 ◽  
Vol 257 (5075) ◽  
pp. 1377-1380 ◽  
Author(s):  
P. Lamy ◽  
J. R. Kuhn ◽  
H. Lin ◽  
S. Koutchmy ◽  
R. N. Smartt

1976 ◽  
Vol 207 ◽  
pp. 790 ◽  
Author(s):  
G. V. Coyne ◽  
F. J. Vrba
Keyword(s):  
Be Star ◽  

2018 ◽  
Vol 479 (4) ◽  
pp. 4560-4565 ◽  
Author(s):  
T Kovács ◽  
Zs Regály
Keyword(s):  

2020 ◽  
Vol 492 (3) ◽  
pp. 3306-3315 ◽  
Author(s):  
Hossam Aly ◽  
Giuseppe Lodato

ABSTRACT Binary systems exert a gravitational torque on misaligned discs orbiting them, causing differential precession which may produce disc warping and tearing. While this is well understood for gas-only discs, misaligned cirumbinary discs of gas and dust have not been thoroughly investigated. We perform SPH simulations of misaligned gas and dust discs around binaries to investigate the different evolution of these two components. We choose two different disc aspect ratios: A thin case for which the gas disc always breaks, and a thick one where a smooth warp develops throughout the disc. For each case, we run simulations of five different dust species with different degrees of coupling with the gas component, varying in Stokes number from 0.002 (strongly coupled dust) to 1000 (effectively decoupled dust). We report two new phenomena: First, large dust grains in thick discs pile up at the warp location, forming narrow dust rings, due to a difference in precession between the gas and dust components. These pile ups do not form at gas pressure maxima, and hence are different from conventional dust traps. This effect is most evident for St ∼ 10–100. Secondly, thin discs tear and break only in the gas, while dust particles with St ≥ 10 form a dense dust trap due to the steep pressure gradient caused by the break in the gas. We find that dust with St ≤ 0.02 closely follow the gas particles, for both thin and thick discs, with radial drift becoming noticeable only for the largest grains in this range.


Sign in / Sign up

Export Citation Format

Share Document