scholarly journals Search for Lensing Signatures in the Gravitational-Wave Observations from the First Half of LIGO–Virgo’s Third Observing Run

2021 ◽  
Vol 923 (1) ◽  
pp. 14
Author(s):  
R. Abbott ◽  
T. D. Abbott ◽  
S. Abraham ◽  
F. Acernese ◽  
K. Ackley ◽  
...  

Abstract We search for signatures of gravitational lensing in the gravitational-wave signals from compact binary coalescences detected by Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) and Advanced Virgo during O3a, the first half of their third observing run. We study: (1) the expected rate of lensing at current detector sensitivity and the implications of a non-observation of strong lensing or a stochastic gravitational-wave background on the merger-rate density at high redshift; (2) how the interpretation of individual high-mass events would change if they were found to be lensed; (3) the possibility of multiple images due to strong lensing by galaxies or galaxy clusters; and (4) possible wave-optics effects due to point-mass microlenses. Several pairs of signals in the multiple-image analysis show similar parameters and, in this sense, are nominally consistent with the strong lensing hypothesis. However, taking into account population priors, selection effects, and the prior odds against lensing, these events do not provide sufficient evidence for lensing. Overall, we find no compelling evidence for lensing in the observed gravitational-wave signals from any of these analyses.

2020 ◽  
Vol 501 (2) ◽  
pp. 2451-2466
Author(s):  
Suvodip Mukherjee ◽  
Tom Broadhurst ◽  
Jose M Diego ◽  
Joseph Silk ◽  
George F Smoot

ABSTRACT Strong lensing of gravitational waves (GWs) is more likely for distant sources but predicted event rates are highly uncertain with many astrophysical origins proposed. Here, we open a new avenue to estimate the event rate of strongly lensed systems by exploring the amplitude of the stochastic gravitational wave background (SGWB). This method can provide a direct upper bound on the high-redshift binary coalescing rates, which can be translated into an upper bound on the expected rate of strongly lensed systems. We show that from the ongoing analysis of the Laser Interferometer Gravitational-wave Observatory (LIGO)-Virgo and in the future from the LIGO–Virgo design sensitivity stringent bounds on the lensing event rate can be imposed using the SGWB signal. Combining measurements of loud GW events with an unresolved stochastic background detection will improve estimates of the numbers of lensed events at high redshift. The proposed method is going to play a crucial in understanding the population of lensed and unlensed systems from GW observations.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 793-794
Author(s):  
Keren Sharon ◽  
Michael D. Gladders ◽  
Jane R. Rigby ◽  
Matthew B. Bayliss ◽  
Eva Wuyts ◽  
...  

AbstractDriven by the unprecedented wealth of high quality data that is accumulating for the Frontier Fields, they are becoming some of the best-studied strong lensing clusters to date, and probably the next few years. As will be discussed intensively in this focus meeting, the FF prove transformative for many fields: from studies of the high redshift Universe, to the assembly and structure of the clusters themselves. The FF data and the extensive collaborative effort around this program will also allow us to examine and improve upon current lens modeling techniques. Strong lensing is a powerful tool for mass reconstruction of the cores of galaxy clusters of all scales, providing an estimate of the total (dark and seen) projected mass density distribution out to 0.5 Mpc. Though SL mass may be biased by contribution from structures along the line of sight, its strength is that it is relatively insensitive to assumptions on cluster baryon astrophysics and dynamical state. Like the Frontier Fields clusters, the most “famous” strong lensing clusters are at the high mass end; they lens dozens of background sources into multiple images, providing ample lensing constraints. In this talk, I will focus on how we can leverage what we learn from modeling the FF clusters in strong lensing studies of the hundreds of clusters that will be discovered in upcoming surveys. In typical clusters, unlike the Frontier Fields, the Bullet Cluster and A1689, we observe only one to a handful of background sources, and have limited lensing constraints. I will describe the limitations that such a configuration imposes on strong lens modeling, highlight measurements that are robust to the richness of lensing evidence, and address the sources of uncertainty and what sort of information can help reduce those uncertainties. This category of lensing clusters is most relevant to the wide cluster surveys of the future.


2018 ◽  
Vol 120 (9) ◽  
Author(s):  
B. P. Abbott ◽  
R. Abbott ◽  
T. D. Abbott ◽  
F. Acernese ◽  
K. Ackley ◽  
...  

2020 ◽  
Vol 498 (3) ◽  
pp. 3946-3963 ◽  
Author(s):  
Tomoya Kinugawa ◽  
Takashi Nakamura ◽  
Hiroyuki Nakano

ABSTRACT We performed Population III (Pop III) binary evolution using population synthesis simulations for seven different models. We found that Pop III binaries tend to be binary black holes (BBHs) with chirp mass Mchirp ∼ 30 M⊙ and they can merge in the present day, due to a long merger time. The merger rate densities of Pop III BBHs at z = 0 are in the range 3.34–21.2 $\rm yr^{-1}\,Gpc^{-3}$ which is consistent with the Advanced Laser Interferometer Gravitational Wave Observatory (aLIGO)/Advanced Virgo (aVIRGO) result of 9.7–101 $\rm yr^{-1}\,Gpc^{-3}$. These Pop III binaries might contribute some portion of the massive BBH gravitational wave (GW) sources detected by aLIGO/aVIRGO. We also calculated the redshift dependence of Pop III BBH mergers. We found that Pop III low-spin BBHs tend to merge at low redshift, while Pop III high-spin BBHs merge at high redshift, which can be confirmed by future GW detectors such as Einstein Telescope (ET), Cosmic Explorer (CE), and DECi-hertz Interferometer Gravitational wave Observatory (DECIGO). These detectors can also check the redshift dependence of the BBH merger rate and spin distribution. Our results show that, except for one model, the mean effective spin 〈χeff〉 at z = 0 lies in the range 0.02–0.3, while at z = 10 it is 0.16–0.64. Therefore, massive stellar-mass BBH detection by GWs will be key for stellar evolution study in the early Universe.


Universe ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 19
Author(s):  
Giulia Cusin ◽  
Ruth Durrer ◽  
Irina Dvorkin

In this paper, we studied the gravitational lensing of gravitational wave events. The probability that an observed gravitational wave source has been (de-)amplified by a given amount is a detector-dependent quantity which depends on different ingredients: the lens distribution, the underlying distribution of sources and the detector sensitivity. The main objective of the present work was to introduce a semi-analytic approach to study the distribution of the magnification of a given source population observed with a given detector. The advantage of this approach is that each ingredient can be individually varied and tested. We computed the expected magnification as both a function of redshift and of the observedsource luminosity distance, which is the only quantity one can access via observation in the absence of an electromagnetic counterpart. As a case study, we then focus on the LIGO/Virgo network and on strong lensing (μ>1).


Author(s):  
C Sivaram ◽  
Arun Kenath

Gravitational waves have been detected in the past few years from several transient events such as merging stellar mass black holes, binary neutron stars, etc. These waves have frequencies in a band ranging from a few hundred hertz to around a kilohertz to which LIGO type instruments are sensitive. LISA would be sensitive to much lower range of frequencies from SMBH mergers. Apart from these cataclysmic burst events, there are innumerable sources of radiation which are continuously emitting gravitational waves of all frequencies. These include a whole mass range of compact binary and isolated compact objects as well as close planetary stellar entities. In this work, quantitative estimates are made of the gravitational wave background produced in typical frequency ranges from such sources emitting over a Hubble time and the fluctuations in the h values measured in the usual devices. Also estimates are made of the high frequency thermal background gravitational radiation from hot stellar interiors and newly formed compact objects.


Sign in / Sign up

Export Citation Format

Share Document