high redshift universe
Recently Published Documents


TOTAL DOCUMENTS

118
(FIVE YEARS 22)

H-INDEX

20
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Vaclav Vavrycuk

Abstract The re-examination of light propagation in space described by the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric reveals surprisingly that this metric does not predict the cosmological redshift as so far incorrectly supposed. It is shown that the change in the frequency of light is always connected with time dilation, similarly as for the gravitational redshift. Therefore, the conformal time must be considered as the cosmic time at the high redshift universe and the original FLRW metric must be substituted by its conformal version. The correctness of the proposed conformal metric is convincingly confirmed by Type Ia supernovae (SNe Ia) observations. The standard FLRW metric produces essential discrepancy with the SNe Ia observations called the ‘supernova dimming’, and consequently dark energy has to be introduced to comply theoretical predictions with data. By contrast, the conformal FLRW metric fits data well with no need to introduce any new free parameter. Hence, the discovery of the supernova dimming actually revealed the failure of the FLRW metric and introducing dark energy was just an unsuccessful attempt to cope with the problem within this false metric. Obviously, adopting the conformal FLRW metric for describing the evolution of the Universe has fundamental cosmological consequences.


Author(s):  
Alberto Sesana ◽  
Natalia Korsakova ◽  
Manuel Arca Sedda ◽  
Vishal Baibhav ◽  
Enrico Barausse ◽  
...  

AbstractWe propose a space-based interferometer surveying the gravitational wave (GW) sky in the milli-Hz to μ-Hz frequency range. By the 2040s, the μ-Hz frequency band, bracketed in between the Laser Interferometer Space Antenna (LISA) and pulsar timing arrays, will constitute the largest gap in the coverage of the astrophysically relevant GW spectrum. Yet many outstanding questions related to astrophysics and cosmology are best answered by GW observations in this band. We show that a μ-Hz GW detector will be a truly overarching observatory for the scientific community at large, greatly extending the potential of LISA. Conceived to detect massive black hole binaries from their early inspiral with high signal-to-noise ratio, and low-frequency stellar binaries in the Galaxy, this instrument will be a cornerstone for multimessenger astronomy from the solar neighbourhood to the high-redshift Universe.


Author(s):  
N. R. Tanvir ◽  
E. Le Floc’h ◽  
L. Christensen ◽  
J. Caruana ◽  
R. Salvaterra ◽  
...  

AbstractAt peak, long-duration gamma-ray bursts are the most luminous sources of electromagnetic radiation known. Since their progenitors are massive stars, they provide a tracer of star formation and star-forming galaxies over the whole of cosmic history. Their bright power-law afterglows provide ideal backlights for absorption studies of the interstellar and intergalactic medium back to the reionization era. The proposed THESEUS mission is designed to detect large samples of GRBs at z > 6 in the 2030s, at a time when supporting observations with major next generation facilities will be possible, thus enabling a range of transformative science. THESEUS will allow us to explore the faint end of the luminosity function of galaxies and the star formation rate density to high redshifts; constrain the progress of re-ionisation beyond $z\gtrsim 6$ z ≳ 6 ; study in detail early chemical enrichment from stellar explosions, including signatures of Population III stars; and potentially characterize the dark energy equation of state at the highest redshifts.


Author(s):  
Aaron Wilkinson ◽  
Omar Almaini ◽  
Vivienne Wild ◽  
David Maltby ◽  
William G Hartley ◽  
...  

Abstract We present the first study of the large-scale clustering of post-starburst (PSB) galaxies in the high redshift Universe (0.5 < z < 3.0). We select ∼4000 PSB galaxies photometrically, the largest high-redshift sample of this kind, from two deep large-scale near-infrared surveys: the UKIDSS Ultra Deep Survey (UDS) DR11 and the Cosmic Evolution Survey (COSMOS). Using angular cross-correlation techniques, we estimate the halo masses for this large sample of PSB galaxies and compare them with quiescent and star-forming galaxies selected in the same fields. We find that low-mass, low-redshift (0.5 < z < 1.0) PSB galaxies preferentially reside in very high-mass dark matter haloes (Mhalo > 1014 M⊙), suggesting they are likely to be infalling satellite galaxies in cluster-like environments. High-mass PSB galaxies are more weakly clustered at low redshifts, but they reside in higher mass haloes with increasing look-back time, suggesting strong redshift-dependent halo downsizing. These key results are consistent with previous results suggesting that two main channels are responsible for the rapid quenching of galaxies. While high-redshift (z > 1) galaxies appear to be quenched by secular feedback mechanisms, processes associated with dense environments are likely to be the key driver of rapid quenching in the low-redshift Universe (z < 1). Finally, we show that the clustering of photometrically selected PSBs are consistent with them being direct descendants of highly dust-enshrouded sub-millimetre galaxies (SMGs), providing tantalising evidence for the oft-speculated evolutionary pathway from starburst to quiescence.


Author(s):  
Enrico Garaldi ◽  
Rüdiger Pakmor ◽  
Volker Springel

Abstract We study the evolution of magnetic fields generated by charge segregation ahead of ionization fronts during the Epoch of Reionization, and their effects on galaxy formation. We compare this magnetic seeding process with the Biermann battery, injection from supernovae, and an imposed seed field at redshift z ≳ 127. Using a suite of self-consistent cosmological and zoom-in simulations based on the Auriga galaxy-formation model, we determine that all mechanisms produce galactic magnetic fields that equally affect galaxy formation, and are nearly indistinguishable at z ≲ 1.5. The former is compatible with observed values, while the latter is correlated with the gas metallicity below a seed-dependent redshift. Low-density gas and haloes below a seed-dependent mass threshold retain memory of the initial magnetic field. We produce synthetic Faraday rotation measure maps, showing that they have the potential to constrain the seeding process, although current observations are not yet sensitive enough. Our results imply that the ad-hoc assumption of a primordial seed field – widely used in galaxy formation simulations but of uncertain physical origin – can be replaced by physically-motivated mechanisms for magnetogenesis with negligible impact on galactic properties. Additionally, magnetic fields generated ahead of ionization fronts appear very similar but weaker than those produced by the Biermann battery. Hence, in a realistic scenario where both mechanisms are active, the former will be negligible compared to the latter. Finally, our results highlight that the high-redshift Universe is a fruitful testing ground for our understanding of magnetic fields generation.


2020 ◽  
Vol 499 (2) ◽  
pp. 2401-2415
Author(s):  
A C Trapp ◽  
Steven R Furlanetto

ABSTRACT Cosmic variance is the intrinsic scatter in the number density of galaxies due to fluctuations in the large-scale dark matter density field. In this work, we present a simple analytic model of cosmic variance in the high-redshift Universe (z ∼ 5–15). We assume that galaxies grow according to the evolution of the halo mass function, which we allow to vary with large-scale environment. Our model produces a reasonable match to the observed ultraviolet (UV) luminosity functions in this era by regulating star formation through stellar feedback and assuming that the UV luminosity function is dominated by recent star formation. We find that cosmic variance in the UV luminosity function is dominated by the variance in the underlying dark matter halo population, and not by differences in halo accretion or the specifics of our stellar feedback model. We also find that cosmic variance dominates over Poisson noise for future high-z surveys except for the brightest sources or at very high redshifts (z ≳ 12). We provide a linear approximation of cosmic variance for a variety of redshifts, magnitudes, and survey areas through the public python package galcv. Finally, we introduce a new method for incorporating priors on cosmic variance into estimates of the galaxy luminosity function and demonstrate that it significantly improves constraints on that important observable.


2020 ◽  
Vol 498 (4) ◽  
pp. 5041-5047
Author(s):  
Nicole M Lloyd-Ronning ◽  
Jarrett L Johnson ◽  
Aycin Aykutalp

ABSTRACT Gamma-ray burst (GRB) data suggest that the jets from GRBs in the high redshift universe are more narrowly collimated than those at lower redshifts. This implies that we detect relatively fewer long GRB progenitor systems (i.e. massive stars) at high redshifts, because a greater fraction of GRBs have their jets pointed away from us. As a result, estimates of the star formation rate (SFR; from the GRB rate) at high redshifts may be diminished if this effect is not taken into account. In this paper, we estimate the SFR using the observed GRB rate, accounting for an evolving jet opening angle. We find that the SFR in the early universe (z > 3) can be up to an order of magnitude higher than the canonical estimates, depending on the severity of beaming angle evolution and the fraction of stars that make long GRBs. Additionally, we find an excess in the SFR at low redshifts, although this lessens when accounting for evolution of the beaming angle. Finally, under the assumption that GRBs do, in fact, trace canonical forms of the cosmic SFR, we constrain the resulting fraction of stars that must produce GRBs, again accounting for jet beaming-angle evolution. We find this assumption suggests a high fraction of stars in the early universe producing GRBs – a result that may, in fact, support our initial assertion that GRBs do not trace canonical estimates of the SFR.


2020 ◽  
Vol 498 (4) ◽  
pp. 4955-4970
Author(s):  
Siddharth Satpathy ◽  
Zhaozhou An ◽  
Rupert A C Croft ◽  
Tiziana Di Matteo ◽  
Ananth Tenneti ◽  
...  

ABSTRACT The Nancy Grace Roman Space Telescope (RST), with its field of view and high sensitivity will make surveys of cosmological large-scale structure possible at high redshifts. We investigate the possibility of detecting baryon acoustic oscillations (BAO) at redshifts z > 7.6 for use as a standard ruler. We use data from the hydrodynamic simulation bluetides in conjunction with the gigaparsec-scale Outer Rim simulation and a model for patchy reionization to create mock RST High Latitude Survey grism data for Lyman α emission line selected galaxies at redshifts z = 7.4 to z = 10, covering 2280 deg2. We measure the monopoles of galaxies in the mock catalogues and fit the BAO features. We find that for a line flux of $L = 7\times 10^{-17} \ {\rm erg\, s^{-1}\, cm}^{-2}$, the 5σ detection limit for the current design, the BAO feature is partially detectable (measured in three out of four survey quadrants analysed independently). The resulting root mean square error on the angular diameter distance to z = 7.7 is 7.9 ${{\ \rm per\ cent}}$. If we improve the detection sensitivity by a factor of two (i.e. $L = 3.5\times 10^{-17} \ {\rm erg\, s^{-1}\, cm}^{-2}$), the distance error reduces to $1.4{{\ \rm per\ cent}}$. We caution that many more factors are yet to be modelled, including dust obscuration, the damping wing due to the intergalactic medium, and low redshift interlopers. If these issues do not strongly affect the results, or different observational techniques (such as use of multiple lines) can mitigate them, RST, or similar instruments may be able to constrain the angular diameter distance to the high redshift universe.


2020 ◽  
Vol 498 (3) ◽  
pp. 4178-4191 ◽  
Author(s):  
R Mondal ◽  
A Fialkov ◽  
C Fling ◽  
I T Iliev ◽  
R Barkana ◽  
...  

ABSTRACT The ARCADE2 and LWA1 experiments have claimed an excess over the cosmic microwave background (CMB) at low radio frequencies. If the cosmological high-redshift contribution to this radio background is between 0.1 per cent and 22 per cent of the CMB at 1.42 GHz, it could explain the tentative EDGES low-band detection of the anomalously deep absorption in the 21-cm signal of neutral hydrogen. We use the upper limit on the 21-cm signal from the Epoch of Reionization (z = 9.1) based on 141 h of observations with LOFAR to evaluate the contribution of the high-redshift Universe to the detected radio background. Marginalizing over astrophysical properties of star-forming haloes, we find (at 95 per cent CL) that the cosmological radio background can be at most 9.6 per cent of the CMB at 1.42 GHz. This limit rules out strong contribution of the high-redshift Universe to the ARCADE2 and LWA1 measurements. Even though LOFAR places limit on the extra radio background, excess of 0.1–9.6 per cent over the CMB (at 1.42 GHz) is still allowed and could explain the EDGES low-band detection. We also constrain the thermal and ionization state of the gas at z = 9.1, and put limits on the properties of the first star-forming objects. We find that, in agreement with the limits from EDGES high-band data, LOFAR data constrain scenarios with inefficient X-ray sources, and cases where the Universe was ionized by stars in massive haloes only.


Sign in / Sign up

Export Citation Format

Share Document